These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26726646)

  • 1. Towards an Accurate Measurement of Thermal Contact Resistance at Chemical Vapor Deposition-Grown Graphene/SiO2 Interface Through Null Point Scanning Thermal Microscopy.
    Chung J; Hwang G; Kim H; Yang W; Kwon O
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9077-82. PubMed ID: 26726646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy.
    Hwang G; Kwon O
    Nanoscale; 2016 Mar; 8(9):5280-90. PubMed ID: 26880606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.
    Hwang G; Chung J; Kwon O
    Rev Sci Instrum; 2014 Nov; 85(11):114901. PubMed ID: 25430136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Substrate Microstructure on the Transport Properties of CVD-Graphene.
    Babichev AV; Rykov SA; Tchernycheva M; Smirnov AN; Davydov VY; Kumzerov YA; Butko VY
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):240-6. PubMed ID: 26652757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer-Free, Large-Scale Growth of High-Quality Graphene on Insulating Substrate by Physical Contact of Copper Foil.
    Song I; Park Y; Cho H; Choi HC
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15374-15378. PubMed ID: 30267452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene growth at the interface between Ni catalyst layer and SiO2/Si substrate.
    Lee JH; Song KW; Park MH; Kim HK; Yang CW
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6468-71. PubMed ID: 22121737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Few-layer graphene direct deposition on Ni and Cu foil by cold-wall chemical vapor deposition.
    Chang QH; Guo GL; Wang T; Ji LC; Huang L; Ling B; Yang HF
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6516-20. PubMed ID: 22962776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic Friction of Wrinkled Graphene Grown by Chemical Vapor Deposition.
    Long F; Yasaei P; Yao W; Salehi-Khojin A; Shahbazian-Yassar R
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20922-20927. PubMed ID: 28513130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pico-Watt Scanning Thermal Microscopy for Thermal Energy Transport Investigation in Atomic Materials.
    Koo S; Park J; Kim K
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity of giant mono- to few-layered CVD graphene supported on an organic substrate.
    Liu J; Wang T; Xu S; Yuan P; Xu X; Wang X
    Nanoscale; 2016 May; 8(19):10298-309. PubMed ID: 27129017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Up-scaling graphene electronics by reproducible metal-graphene contacts.
    Asadi K; Timmering EC; Geuns TC; Pesquera A; Centeno A; Zurutuza A; Klootwijk JH; Blom PW; de Leeuw DM
    ACS Appl Mater Interfaces; 2015 May; 7(18):9429-35. PubMed ID: 25901791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal transport into graphene through nanoscopic contacts.
    Menges F; Riel H; Stemmer A; Dimitrakopoulos C; Gotsmann B
    Phys Rev Lett; 2013 Nov; 111(20):205901. PubMed ID: 24289696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
    Tovee PD; Pumarol ME; Rosamond MC; Jones R; Petty MC; Zeze DA; Kolosov OV
    Phys Chem Chem Phys; 2014 Jan; 16(3):1174-81. PubMed ID: 24292551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical-Vapor-Deposited Graphene as a Thermally Conducting Coating.
    Tortello M; Pasternak I; Zeranska-Chudek K; Strupinski W; Gonnelli RS; Fina A
    ACS Appl Nano Mater; 2019 May; 2(5):2621-2633. PubMed ID: 31157324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.
    Feng Y; Chen K
    Nanotechnology; 2015 Jan; 26(3):035302. PubMed ID: 25549272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition.
    De Fazio D; Purdie DG; Ott AK; Braeuninger-Weimer P; Khodkov T; Goossens S; Taniguchi T; Watanabe K; Livreri P; Koppens FHL; Hofmann S; Goykhman I; Ferrari AC; Lombardo A
    ACS Nano; 2019 Aug; 13(8):8926-8935. PubMed ID: 31322332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.