These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26726779)

  • 41. Effect of formulation on the behavior of 1,3-dichloropropene in soil.
    Kim JH; Papiernik SK; Farmer WJ; Gan J; Yates SR
    J Environ Qual; 2003; 32(6):2223-9. PubMed ID: 14674545
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of application rate on fumigant degradation in five agricultural soils.
    Qin R; Gao S; Ajwa H; Hanson BD
    Sci Total Environ; 2016 Jan; 541():528-534. PubMed ID: 26439645
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of volatile/semivolatile products derived from chemical remediation of cis-1,3-dichloropropene by thiosulfate.
    Zheng W; Gan J; Papiernik SK; Yates SR
    Environ Sci Technol; 2007 Sep; 41(18):6454-9. PubMed ID: 17948793
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved soil fumigation by Telone C35 using carbonation.
    Thomas JE; Ou LT; Allen LH; Vu JC; Dickson DW
    J Environ Sci Health B; 2011; 46(8):655-61. PubMed ID: 21806461
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Emissions from soil fumigation in two raised bed production systems tarped with low permeability films.
    Qin R; Gao S; Thomas JE; Dickson DW; Ajwa H; Wang D
    Chemosphere; 2013 Oct; 93(7):1379-85. PubMed ID: 23899923
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coupled use of Fe-impregnated biochar and urea-hydrogen peroxide to simultaneously reduce soil-air emissions of fumigant and improve crop growth.
    Qin J; Ashworth DJ; Yates SR; Shen G
    J Hazard Mater; 2020 Sep; 396():122762. PubMed ID: 32361626
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emission and transport of 1,3-dichloropropene and chloropicrin in a large field tarped with VaporSafe TIF.
    Gao S; Ajwa H; Qin R; Stanghellini M; Sullivan D
    Environ Sci Technol; 2013 Jan; 47(1):405-11. PubMed ID: 23171232
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 1,3-Dichloropropene and chloropicrin emission reduction using a flexible CuInS
    Yan L; Guo X; Rao P; Huang L; Sun M; Li L; Shen G
    Environ Sci Pollut Res Int; 2021 Feb; 28(6):6980-6989. PubMed ID: 33025439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of application rate on chloropicrin half-life and simulated emissions across a range of soil conditions.
    Ashworth DJ; Yates SR
    Sci Total Environ; 2019 Sep; 682():457-463. PubMed ID: 31128365
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gas-phase distribution and emission of chloropicrin applied in gelatin capsules to soil columns.
    Wang Q; Wang D; Tang J; Yan D; Zhang H; Wang F; Guo M; Cao A
    J Environ Qual; 2010; 39(3):917-22. PubMed ID: 20400587
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparisons of soil surface sealing methods to reduce fumigant emission loss.
    Gao S; Hanson BD; Qin R; Wang D; Yates SR
    J Environ Qual; 2011; 40(5):1480-7. PubMed ID: 21869510
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chloropicrin emissions after shank injection: two-dimensional analytical and numerical model simulations of different source methods and field measurements.
    Wang D; Yates SR; Gao S
    J Environ Qual; 2011; 40(5):1443-9. PubMed ID: 21869506
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Soil fumigation alters adsorption and degradation behavior of pesticides in soil.
    Huang B; Yan D; Wang X; Wang X; Fang W; Zhang D; Ouyang C; Wang Q; Cao A
    Environ Pollut; 2019 Mar; 246():264-273. PubMed ID: 30557800
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of water seal on reducing 1,3-dichloropropene emissions from different soil textures.
    McDonald JA; Gao S; Qin R; Hanson BD; Trout TJ; Wang D
    J Environ Qual; 2009; 38(2):712-8. PubMed ID: 19244492
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Higher-tier assessment of the potential for groundwater issues due to the use of 1,3-D soil fumigant; evaluation of the active ingredient, metabolites and potentially related chlorinated compounds.
    Lamastra L; Ferrari F; Fait G; Greco L; Kennedy SH; Capri E; Trevisan M
    Pest Manag Sci; 2011 Nov; 67(11):1439-45. PubMed ID: 21567891
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Irrigation, organic matter addition, and tarping as methods of reducing emissions of methyl iodide from agricultural soil.
    Ashworth DJ; Luo L; Xuan R; Yates SR
    Environ Sci Technol; 2011 Feb; 45(4):1384-90. PubMed ID: 21214237
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of injection systems and plastic mulches on distribution and emissions of cis- and trans-1,3-dichloropropene and chloropicrin.
    Ou LT; Thomas JE; Allen LH; Vu JC; Dickson DW
    Arch Environ Contam Toxicol; 2007 Aug; 53(2):141-50. PubMed ID: 17549542
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Persistence, distribution, and emission of Telone C35 injected into a Florida sandy soil as affected by moisture, organic matter, and plastic film cover.
    Thomas JE; Ou LT; Allen LH; McCormack LA; Vu JC; Dickson DW
    J Environ Sci Health B; 2004 May; 39(4):505-16. PubMed ID: 15473633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of environmental conditions on the permeability of high density polyethylene film to fumigant vapors.
    Papiernik SK; Yates SR
    Environ Sci Technol; 2002 Apr; 36(8):1833-8. PubMed ID: 11993884
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Construction of a reactive surface barrier to reduce fumigant 1,3-dichloropropene emissions.
    Zheng W; Papiernik SK; Guo M; Dungan RS; Yates SR
    Environ Toxicol Chem; 2005 Aug; 24(8):1867-74. PubMed ID: 16152955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.