BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26726886)

  • 1. Tuning the Mechanical Properties of Poly(Ethylene Glycol) Microgel-Based Scaffolds to Increase 3D Schwann Cell Proliferation.
    Zhou W; Stukel JM; Cebull HL; Willits RK
    Macromol Biosci; 2016 Apr; 16(4):535-44. PubMed ID: 26726886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable hydrogels composed of oxime crosslinked poly(ethylene glycol), hyaluronic acid and collagen: a tunable platform for soft tissue engineering.
    Hardy JG; Lin P; Schmidt CE
    J Biomater Sci Polym Ed; 2015; 26(3):143-61. PubMed ID: 25555089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.
    Chen G; Dong C; Yang L; Lv Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering.
    Suri S; Schmidt CE
    Tissue Eng Part A; 2010 May; 16(5):1703-16. PubMed ID: 20136524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel microgel-based scaffolds to study the effect of degradability on human dermal fibroblasts.
    Zhou W; Stukel J; AlNiemi A; Willits RK
    Biomed Mater; 2018 Jul; 13(5):055007. PubMed ID: 29869613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of ionic crosslinkers (Ca
    Sarker M; Izadifar M; Schreyer D; Chen X
    J Biomater Sci Polym Ed; 2018 Jul; 29(10):1126-1154. PubMed ID: 29376775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of substrate stiffness on the behavior and functions of Schwann cells in culture.
    Gu Y; Ji Y; Zhao Y; Liu Y; Ding F; Gu X; Yang Y
    Biomaterials; 2012 Oct; 33(28):6672-81. PubMed ID: 22738780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-walled carbon nanotubes alter Schwann cell behavior differentially within 2D and 3D environments.
    Behan BL; DeWitt DG; Bogdanowicz DR; Koppes AN; Bale SS; Thompson DM
    J Biomed Mater Res A; 2011 Jan; 96(1):46-57. PubMed ID: 20949573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of PEG Microgels into Porous Cell-Instructive 3D Scaffolds via Thiol-Ene Click Chemistry.
    Xin S; Wyman OM; Alge DL
    Adv Healthc Mater; 2018 Jun; 7(11):e1800160. PubMed ID: 29663702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperbranched poly(glycidol)/poly(ethylene oxide) crosslinked hydrogel for tissue engineering scaffold using e-beams.
    Haryanto ; Singh D; Huh PH; Kim SC
    J Biomed Mater Res A; 2016 Jan; 104(1):48-56. PubMed ID: 26148840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genipin-treated chitosan nanofibers as a novel scaffold for nerve guidance channel design.
    Lau YT; Kwok LF; Tam KW; Chan YS; Shum DK; Shea GK
    Colloids Surf B Biointerfaces; 2018 Feb; 162():126-134. PubMed ID: 29190463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradable poly(amidoamine) hydrogels as scaffolds for in vitro culturing of peripheral nervous system cells.
    Mauro N; Manfredi A; Ranucci E; Procacci P; Laus M; Antonioli D; Mantovani C; Magnaghi V; Ferruti P
    Macromol Biosci; 2013 Mar; 13(3):332-47. PubMed ID: 23239646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral nerve growth within a hydrogel microchannel scaffold supported by a kink-resistant conduit.
    Shahriari D; Shibayama M; Lynam DA; Wolf KJ; Kubota G; Koffler JY; Tuszynski MH; Campana WM; Sakamoto JS
    J Biomed Mater Res A; 2017 Dec; 105(12):3392-3399. PubMed ID: 28804998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications.
    Ning L; Sun H; Lelong T; Guilloteau R; Zhu N; Schreyer DJ; Chen X
    Biofabrication; 2018 Jun; 10(3):035014. PubMed ID: 29911990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Off-the-Shelf Multilumen Poly(Ethylene Glycol) Nerve Guidance Conduits Using Stereolithography.
    Arcaute K; Mann BK; Wicker RB
    Tissue Eng Part C Methods; 2011 Jan; 17(1):27-38. PubMed ID: 20673135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue engineered hydrogels supporting 3D neural networks.
    Aregueta-Robles UA; Martens PJ; Poole-Warren LA; Green RA
    Acta Biomater; 2019 Sep; 95():269-284. PubMed ID: 30500450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of surface functional groups on proliferation and biofunction of Schwann cells.
    Wang Y; Ji Y; Zhao Y; Kong Y; Gao M; Feng Q; Wu Y; Yang Y
    J Biomater Appl; 2016 May; 30(10):1494-504. PubMed ID: 26911577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of poly(ethylene glycol) gels with added collagen for neural tissue engineering.
    Scott R; Marquardt L; Willits RK
    J Biomed Mater Res A; 2010 Jun; 93(3):817-23. PubMed ID: 20401966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration.
    Subramanian A; Krishnan UM; Sethuraman S
    Biomed Mater; 2011 Apr; 6(2):025004. PubMed ID: 21301055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.