These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26726994)

  • 1. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage.
    Han WM; Heo SJ; Driscoll TP; Delucca JF; McLeod CM; Smith LJ; Duncan RL; Mauck RL; Elliott DM
    Nat Mater; 2016 Apr; 15(4):477-84. PubMed ID: 26726994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of cellular microenvironment and mechanical perturbation on calcium signalling in meniscus fibrochondrocytes.
    Han WM; Heo SJ; Driscoll TP; Boggs ME; Duncan RL; Mauck RL; Elliott DM
    Eur Cell Mater; 2014 Jun; 27():321-31. PubMed ID: 24908425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Kandel RA
    Tissue Eng; 2004; 10(9-10):1323-31. PubMed ID: 15588393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrocartilage tissue engineering: the role of the stress environment on cell morphology and matrix expression.
    Thomopoulos S; Das R; Birman V; Smith L; Ku K; Elson EL; Pryse KM; Marquez JP; Genin GM
    Tissue Eng Part A; 2011 Apr; 17(7-8):1039-53. PubMed ID: 21091338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanobioreactors for Cartilage Tissue Engineering.
    Weber JF; Perez R; Waldman SD
    Methods Mol Biol; 2015; 1340():203-19. PubMed ID: 26445841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-engineered versus native cartilage: linkage between cellular mechano-transduction and biomechanical properties.
    Lee JH; Kisiday J; Grodzinsky AJ
    Novartis Found Symp; 2003; 249():52-64; discussion 64-9, 170-4, 239-41. PubMed ID: 12708649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single Cell Microgel Based Modular Bioinks for Uncoupled Cellular Micro- and Macroenvironments.
    Kamperman T; Henke S; van den Berg A; Shin SR; Tamayol A; Khademhosseini A; Karperien M; Leijten J
    Adv Healthc Mater; 2017 Feb; 6(3):. PubMed ID: 27973710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of proteoglycans in tendon.
    Rees SG; Dent CM; Caterson B
    Scand J Med Sci Sports; 2009 Aug; 19(4):470-8. PubMed ID: 19422635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific.
    Han WM; Heo SJ; Driscoll TP; Smith LJ; Mauck RL; Elliott DM
    Biophys J; 2013 Aug; 105(3):807-17. PubMed ID: 23931328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the constitutive properties of native, tissue engineered, and degenerated articular cartilage.
    Seifzadeh A; Oguamanam DC; Papini M
    Clin Biomech (Bristol, Avon); 2012 Oct; 27(8):852-8. PubMed ID: 22578740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of Fibrocartilage with Fibrous Alignment of Type I Collagen in Scaffold-Free Manner.
    Jang S; Lee J; Jeong JG; Oh TI; Lee E
    Tissue Eng Part A; 2023 Oct; 29(19-20):529-540. PubMed ID: 37382424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical loading of chondrocytes embedded in 3D constructs: in vitro methods for assessment of morphological and metabolic response to compressive strain.
    Lee DA; Knight MM
    Methods Mol Med; 2004; 100():307-24. PubMed ID: 15280603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoreversible hydrogel scaffolds for articular cartilage engineering.
    Fisher JP; Jo S; Mikos AG; Reddi AH
    J Biomed Mater Res A; 2004 Nov; 71(2):268-74. PubMed ID: 15368220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginate-embedded zonal chondrocytes and mesenchymal stem cells.
    Coates EE; Riggin CN; Fisher JP
    J Orthop Res; 2012 Dec; 30(12):1886-97. PubMed ID: 22674584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using dihydropyridine-release strategies to enhance load effects in engineered human bone constructs.
    Wood MA; Yang Y; Thomas PB; Haj AJ
    Tissue Eng; 2006 Sep; 12(9):2489-97. PubMed ID: 16995782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage.
    Tran SC; Cooley AJ; Elder SH
    Biotechnol Bioeng; 2011 Jun; 108(6):1421-9. PubMed ID: 21274847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration.
    Spalazzi JP; Dagher E; Doty SB; Guo XE; Rodeo SA; Lu HH
    J Biomed Mater Res A; 2008 Jul; 86(1):1-12. PubMed ID: 18442111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the scaffold geometry on the spatial and temporal evolution of the mechanical properties of tissue-engineered cartilage: insights from a mathematical model.
    Bandeiras C; Completo A; Ramos A
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1057-70. PubMed ID: 25801173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanobiological conditioning of stem cells for cartilage tissue engineering.
    Schumann D; Kujat R; Nerlich M; Angele P
    Biomed Mater Eng; 2006; 16(4 Suppl):S37-52. PubMed ID: 16823112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histochemical analyses of tissue-engineered human menisci.
    Schoenfeld AJ; Jacquet R; Lowder E; Doherty A; Leeson MC; Landis WJ
    Connect Tissue Res; 2009; 50(5):307-14. PubMed ID: 19863389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.