BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 26727489)

  • 1. Structure of human heat-shock transcription factor 1 in complex with DNA.
    Neudegger T; Verghese J; Hayer-Hartl M; Hartl FU; Bracher A
    Nat Struct Mol Biol; 2016 Feb; 23(2):140-6. PubMed ID: 26727489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of HSF2 reveal mechanisms for differential regulation of human heat-shock factors.
    Jaeger AM; Pemble CW; Sistonen L; Thiele DJ
    Nat Struct Mol Biol; 2016 Feb; 23(2):147-54. PubMed ID: 26727490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-helix 1 in the DNA-binding domain of heat shock factor 1 regulates its heat-induced trimerization and DNA-binding.
    Lu M; Sohn KJ; Kim SW; Li CR; Kim S; Kim DK; Park JS
    Biochem Biophys Res Commun; 2009 Aug; 385(4):612-7. PubMed ID: 19486883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1.
    Hentze N; Le Breton L; Wiesner J; Kempf G; Mayer MP
    Elife; 2016 Jan; 5():. PubMed ID: 26785146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic selection for constitutively trimerized human HSF1 mutants identifies a role for coiled-coil motifs in DNA binding.
    Neef DW; Jaeger AM; Thiele DJ
    G3 (Bethesda); 2013 Aug; 3(8):1315-24. PubMed ID: 23733891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHIP interacts with heat shock factor 1 during heat stress.
    Kim SA; Yoon JH; Kim DK; Kim SG; Ahn SG
    FEBS Lett; 2005 Dec; 579(29):6559-63. PubMed ID: 16293251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity.
    Solomon IH; Hager JM; Safi R; McDonnell DP; Redinbo MR; Ortlund EA
    J Mol Biol; 2005 Dec; 354(5):1091-102. PubMed ID: 16289203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionarily conserved domain of heat shock transcription factor negatively regulates oligomerization and DNA binding.
    Ota A; Enoki Y; Yamamoto N; Sawai M; Sakurai H
    Biochim Biophys Acta; 2013 Sep; 1829(9):930-6. PubMed ID: 23567048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity.
    Jaeger AM; Makley LN; Gestwicki JE; Thiele DJ
    J Biol Chem; 2014 Oct; 289(44):30459-30469. PubMed ID: 25204655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress.
    Ahn SG; Liu PC; Klyachko K; Morimoto RI; Thiele DJ
    Genes Dev; 2001 Aug; 15(16):2134-45. PubMed ID: 11511544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two distinct disulfide bonds formed in human heat shock transcription factor 1 act in opposition to regulate its DNA binding activity.
    Lu M; Kim HE; Li CR; Kim S; Kwak IJ; Lee YJ; Kim SS; Moon JY; Kim CH; Kim DK; Kang HS; Park JS
    Biochemistry; 2008 Jun; 47(22):6007-15. PubMed ID: 18457423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival.
    Vilaboa N; Boré A; Martin-Saavedra F; Bayford M; Winfield N; Firth-Clark S; Kirton SB; Voellmy R
    Nucleic Acids Res; 2017 Jun; 45(10):5797-5817. PubMed ID: 28369544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coactivator ASC-2 mediates heat shock factor 1-mediated transactivation dependent on heat shock.
    Hong S; Kim SH; Heo MA; Choi YH; Park MJ; Yoo MA; Kim HD; Kang HS; Cheong J
    FEBS Lett; 2004 Feb; 559(1-3):165-70. PubMed ID: 14960326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat-shock cognate 70 is required for the activation of heat-shock factor 1 in mammalian cells.
    Ahn SG; Kim SA; Yoon JH; Vacratsis P
    Biochem J; 2005 Nov; 392(Pt 1):145-52. PubMed ID: 16050811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions.
    Peng H; Begg GE; Schultz DC; Friedman JR; Jensen DE; Speicher DW; Rauscher FJ
    J Mol Biol; 2000 Feb; 295(5):1139-62. PubMed ID: 10653693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation.
    Hashikawa N; Mizukami Y; Imazu H; Sakurai H
    J Biol Chem; 2006 Feb; 281(7):3936-42. PubMed ID: 16361698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure.
    Zuo J; Baler R; Dahl G; Voellmy R
    Mol Cell Biol; 1994 Nov; 14(11):7557-68. PubMed ID: 7935471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification, crystallization and X-ray diffraction analysis of the DNA-binding domain of human heat-shock factor 2.
    Feng H; Liu W; Wang da C
    Acta Crystallogr F Struct Biol Commun; 2016 Apr; 72(Pt 4):294-9. PubMed ID: 27050263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor.
    Bulman AL; Nelson HC
    Proteins; 2005 Mar; 58(4):826-35. PubMed ID: 15651035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.