BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 26728004)

  • 1. Harnessing information from injury narratives in the 'big data' era: understanding and applying machine learning for injury surveillance.
    Vallmuur K; Marucci-Wellman HR; Taylor JA; Lehto M; Corns HL; Smith GS
    Inj Prev; 2016 Apr; 22 Suppl 1(Suppl 1):i34-42. PubMed ID: 26728004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classifying injury narratives of large administrative databases for surveillance-A practical approach combining machine learning ensembles and human review.
    Marucci-Wellman HR; Corns HL; Lehto MR
    Accid Anal Prev; 2017 Jan; 98():359-371. PubMed ID: 27863339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning approaches to analysing textual injury surveillance data: a systematic review.
    Vallmuur K
    Accid Anal Prev; 2015 Jun; 79():41-9. PubMed ID: 25795924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined Fuzzy and Naive Bayesian strategy can be used to assign event codes to injury narratives.
    Marucci-Wellman H; Lehto M; Corns H
    Inj Prev; 2011 Dec; 17(6):407-14. PubMed ID: 21482563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction accident narrative classification: An evaluation of text mining techniques.
    Goh YM; Ubeynarayana CU
    Accid Anal Prev; 2017 Nov; 108():122-130. PubMed ID: 28865927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-miss narratives from the fire service: a Bayesian analysis.
    Taylor JA; Lacovara AV; Smith GS; Pandian R; Lehto M
    Accid Anal Prev; 2014 Jan; 62():119-29. PubMed ID: 24144497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A practical tool for public health surveillance: Semi-automated coding of short injury narratives from large administrative databases using Naïve Bayes algorithms.
    Marucci-Wellman HR; Lehto MR; Corns HL
    Accid Anal Prev; 2015 Nov; 84():165-76. PubMed ID: 26412196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting occupational injury causal factors using text-based analytics: A systematic review.
    Khairuddin MZF; Hasikin K; Abd Razak NA; Lai KW; Osman MZ; Aslan MF; Sabanci K; Azizan MM; Satapathy SC; Wu X
    Front Public Health; 2022; 10():984099. PubMed ID: 36187621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian decision support for coding occupational injury data.
    Nanda G; Grattan KM; Chu MT; Davis LK; Lehto MR
    J Safety Res; 2016 Jun; 57():71-82. PubMed ID: 27178082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injury narrative text classification using factorization model.
    Chen L; Vallmuur K; Nayak R
    BMC Med Inform Decis Mak; 2015; 15 Suppl 1(Suppl 1):S5. PubMed ID: 26043671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pediatric Injury Surveillance From Uncoded Emergency Department Admission Records in Italy: Machine Learning-Based Text-Mining Approach.
    Azzolina D; Bressan S; Lorenzoni G; Baldan GA; Bartolotta P; Scognamiglio F; Francavilla A; Lanera C; Da Dalt L; Gregori D
    JMIR Public Health Surveill; 2023 Jul; 9():e44467. PubMed ID: 37436799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of narrative text for injury surveillance research: a systematic review.
    McKenzie K; Scott DA; Campbell MA; McClure RJ
    Accid Anal Prev; 2010 Mar; 42(2):354-63. PubMed ID: 20159054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic review of data mining and machine learning for air pollution epidemiology.
    Bellinger C; Mohomed Jabbar MS; Zaïane O; Osornio-Vargas A
    BMC Public Health; 2017 Nov; 17(1):907. PubMed ID: 29179711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Big-Data Analysis, Cluster Analysis, and Machine-Learning Approaches.
    Alonso-Betanzos A; Bolón-Canedo V
    Adv Exp Med Biol; 2018; 1065():607-626. PubMed ID: 30051410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of methods for auto-coding causation of injury narratives.
    Bertke SJ; Meyers AR; Wurzelbacher SJ; Measure A; Lampl MP; Robins D
    Accid Anal Prev; 2016 Mar; 88():117-23. PubMed ID: 26745274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian methods: a useful tool for classifying injury narratives into cause groups.
    Lehto M; Marucci-Wellman H; Corns H
    Inj Prev; 2009 Aug; 15(4):259-65. PubMed ID: 19652000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Big Data and machine learning in radiation oncology: State of the art and future prospects.
    Bibault JE; Giraud P; Burgun A
    Cancer Lett; 2016 Nov; 382(1):110-117. PubMed ID: 27241666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using multiple coding schemes for classification and coding of agricultural injury.
    Murphy D; Gorucu S; Weichelt B; Scott E; Purschwitz M
    Am J Ind Med; 2019 Feb; 62(2):87-98. PubMed ID: 30561026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisit of Machine Learning Supported Biological and Biomedical Studies.
    Yu XT; Wang L; Zeng T
    Methods Mol Biol; 2018; 1754():183-204. PubMed ID: 29536444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A health analytics semantic ETL service for obesity surveillance.
    Poulymenopoulou M; Papakonstantinou D; Malamateniou F; Vassilacopoulos G
    Stud Health Technol Inform; 2015; 210():840-4. PubMed ID: 25991273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.