These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 26729111)

  • 21. Time-Dependent and Organ-Specific Changes in Mitochondrial Function, Mitochondrial DNA Integrity, Oxidative Stress and Mononuclear Cell Infiltration in a Mouse Model of Burn Injury.
    Szczesny B; Brunyánszki A; Ahmad A; Oláh G; Porter C; Toliver-Kinsky T; Sidossis L; Herndon DN; Szabo C
    PLoS One; 2015; 10(12):e0143730. PubMed ID: 26630679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Puerarin attenuates severe burn-induced acute myocardial injury in rats.
    Liu S; Ren HB; Chen XL; Wang F; Wang RS; Zhou B; Wang C; Sun YX; Wang YJ
    Burns; 2015 Dec; 41(8):1748-1757. PubMed ID: 26514700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Both the H
    Ahmad A; Szabo C
    Pharmacol Res; 2016 Nov; 113(Pt A):348-355. PubMed ID: 27639598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melatonin reduces oxidative damage to skin and normalizes blood coagulation in a rat model of thermal injury.
    Tunali T; Sener G; Yarat A; Emekli N
    Life Sci; 2005 Jan; 76(11):1259-65. PubMed ID: 15642596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuromuscular dysfunction in burns and its relationship to burn size, hypermetabolism, and immunosuppression.
    Tomera JF; Martyn J; Hoaglin DC
    J Trauma; 1988 Oct; 28(10):1499-504. PubMed ID: 3172313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myelo-erythroid commitment after burn injury is under β-adrenergic control via MafB regulation.
    Hasan S; Johnson NB; Mosier MJ; Shankar R; Conrad P; Szilagyi A; Gamelli RL; Muthumalaiappan K
    Am J Physiol Cell Physiol; 2017 Mar; 312(3):C286-C301. PubMed ID: 28031160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-dependent morphological and biochemical changes following cutaneous thermal burn injury and their modulation by copper nicotinate complex: an animal model.
    Nassar MA; Eldien HM; Tawab HS; Saleem TH; Omar HM; Nassar AY; Hussein MR
    Ultrastruct Pathol; 2012 Oct; 36(5):343-55. PubMed ID: 23025652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Burns: what are the pharmacological treatment options?
    Demling RH
    Expert Opin Pharmacother; 2008 Aug; 9(11):1895-908. PubMed ID: 18627328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transdermal Nicotine Application Attenuates Cardiac Dysfunction after Severe Thermal Injury.
    Claassen L; Papst S; Reimers K; Stukenborg-Colsman C; Steinstraesser L; Vogt PM; Kraft T; Niederbichler AD
    Biomed Res Int; 2015; 2015():292076. PubMed ID: 26290866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Gene expression of C2 subunit of proteasome in cardiac muscle in burned rats with sepsis].
    Shen CA; Chai JK; Yao YM; Sheng ZY; Jiang JH
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2005 Apr; 17(4):200-2. PubMed ID: 15836819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathophysiology and pharmacokinetics following burn injury.
    Bonate PL
    Clin Pharmacokinet; 1990 Feb; 18(2):118-30. PubMed ID: 2180612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium antagonists improve cardiac mechanical performance after thermal trauma.
    Horton JW; White DJ; Maass D; Sanders B; Thompson M; Giroir B
    J Surg Res; 1999 Nov; 87(1):39-50. PubMed ID: 10527702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mediation of burn-induced hypermetabolism by CRF receptor-2 activity.
    Chance WT; Dayal R; Friend LA; Thomas I; Sheriff S
    Life Sci; 2007 Feb; 80(11):1064-72. PubMed ID: 17222429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antioxidant vitamin therapy alters burn trauma-mediated cardiac NF-kappaB activation and cardiomyocyte cytokine secretion.
    Horton JW; White DJ; Maass DL; Hybki DP; Haudek S; Giroir B
    J Trauma; 2001 Mar; 50(3):397-406; discussion 407-8. PubMed ID: 11265018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of Isolated Burns on Major Organs: A Large Animal Model Characterized.
    Burmeister DM; McIntyre MK; Baker BA; Rizzo JA; Brown A; Natesan S; Chung KK; Christy RJ
    Shock; 2016 Sep; 46(3 Suppl 1):137-47. PubMed ID: 27380531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Rat Burn Injury Model for Studying Changes in Microvascular Permeability.
    Wiggins-Dohlvik K; Tharakan B
    Methods Mol Biol; 2018; 1717():93-100. PubMed ID: 29468586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathophysiological analysis of combined burn and smoke inhalation injuries in sheep.
    Soejima K; Schmalstieg FC; Sakurai H; Traber LD; Traber DL
    Am J Physiol Lung Cell Mol Physiol; 2001 Jun; 280(6):L1233-41. PubMed ID: 11350803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein kinase C inhibition improves ventricular function after thermal trauma.
    Horton JW; White J; Maass D
    J Trauma; 1998 Feb; 44(2):254-64; discussion 264-5. PubMed ID: 9498495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Protective effect of melatonin on myocardial injury in severely- burned rats].
    Han XH; Xu L
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2012 Dec; 24(12):747-9. PubMed ID: 23168205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Burns: an update on current pharmacotherapy.
    Rojas Y; Finnerty CC; Radhakrishnan RS; Herndon DN
    Expert Opin Pharmacother; 2012 Dec; 13(17):2485-94. PubMed ID: 23121414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.