These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 26729114)

  • 41. Map-Based Indoor Pedestrian Navigation Using an Auxiliary Particle Filter.
    Yu C; El-Sheimy N; Lan H; Liu Z
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400415
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multi-Sensor Fusion Approach for Improving Map-Based Indoor Pedestrian Localization.
    Huang HY; Hsieh CY; Liu KC; Cheng HC; Hsu SJ; Chan CT
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480471
    [TBL] [Abstract][Full Text] [Related]  

  • 43. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.
    Tang J; Chen Y; Niu X; Wang L; Chen L; Liu J; Shi C; Hyyppä J
    Sensors (Basel); 2015 Jul; 15(7):16710-28. PubMed ID: 26184206
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activity Recognition and Semantic Description for Indoor Mobile Localization.
    Guo S; Xiong H; Zheng X; Zhou Y
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335555
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multi-Floor Indoor Pedestrian Dead Reckoning with a Backtracking Particle Filter and Viterbi-Based Floor Number Detection.
    De Cock C; Joseph W; Martens L; Trogh J; Plets D
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving the Heading Accuracy in Indoor Pedestrian Navigation Based on a Decision Tree and Kalman Filter.
    Hu G; Zhang W; Wan H; Li X
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32178289
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Indoor augmented reality (AR) pedestrian navigation for emergency evacuation based on BIM and GIS.
    Valizadeh M; Ranjgar B; Niccolai A; Hosseini H; Rezaee S; Hakimpour F
    Heliyon; 2024 Jun; 10(12):e32852. PubMed ID: 38975124
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrating Moving Platforms in a SLAM Agorithm for Pedestrian Navigation.
    Kaiser S; Lang C
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544728
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Indoor Pedestrian Positioning Method Using HMM with a Fuzzy Pattern Recognition Algorithm in a WLAN Fingerprint System.
    Ni Y; Liu J; Liu S; Bai Y
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27618053
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wi-Fi/MARG Integration for Indoor Pedestrian Localization.
    Tian Z; Jin Y; Zhou M; Wu Z; Li Z
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973412
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Loosely Coupled GNSS and UWB with INS Integration for Indoor/Outdoor Pedestrian Navigation.
    Di Pietra V; Dabove P; Piras M
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167359
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heading Estimation for Indoor Pedestrian Navigation Using a Smartphone in the Pocket.
    Deng ZA; Wang G; Hu Y; Wu D
    Sensors (Basel); 2015 Aug; 15(9):21518-36. PubMed ID: 26343679
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An intelligent indoor positioning system based on pedestrian directional signage object detection: a case study of Taipei Main Station.
    Yeh CC; Jhang KJ; Chang CC
    Math Biosci Eng; 2019 Oct; 17(1):266-285. PubMed ID: 31731351
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Indoor Positioning System Based on Chest-Mounted IMU.
    Lu C; Uchiyama H; Thomas D; Shimada A; Taniguchi RI
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669617
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones.
    Deng ZA; Wang G; Hu Y; Cui Y
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187391
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Robust PDR/UWB Integrated Indoor Localization Approach for Pedestrians in Harsh Environments.
    Tong H; Xin N; Su X; Chen T; Wu J
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905772
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Indoor Positioning System Based on Static Objects in Large Indoor Scenes by Using Smartphone Cameras.
    Xiao A; Chen R; Li D; Chen Y; Wu D
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29997340
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Enhanced Pedestrian Visual-Inertial SLAM System Aided with Vanishing Point in Indoor Environments.
    Chai W; Li C; Zhang M; Sun Z; Yuan H; Lin F; Li Q
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833504
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improving IMES Localization Accuracy by Integrating Dead Reckoning Information.
    Fujii K; Arie H; Wang W; Kaneko Y; Sakamoto Y; Schmitz A; Sugano S
    Sensors (Basel); 2016 Jan; 16(2):163. PubMed ID: 26828492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Smartphone-Based Traveled Distance Estimation Using Individual Walking Patterns for Indoor Localization.
    Kang J; Lee J; Eom DS
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30231534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.