BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 26729300)

  • 1. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants.
    Sharma SS; Dietz KJ; Mimura T
    Plant Cell Environ; 2016 May; 39(5):1112-26. PubMed ID: 26729300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation.
    Yang X; Feng Y; He Z; Stoffella PJ
    J Trace Elem Med Biol; 2005; 18(4):339-53. PubMed ID: 16028496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacuolar Transporters - Companions on a Longtime Journey.
    Martinoia E
    Plant Physiol; 2018 Feb; 176(2):1384-1407. PubMed ID: 29295940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of vacuolar proton pumps and metal/H
    Khoudi H
    Physiol Plant; 2021 Sep; 173(1):384-393. PubMed ID: 33937997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity of tonoplast proton pumps and Na+/H+ exchange in potato cell cultures is modulated by salt.
    Queirós F; Fontes N; Silva P; Almeida D; Maeshima M; Gerós H; Fidalgo F
    J Exp Bot; 2009; 60(4):1363-74. PubMed ID: 19213810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuolar transporters and their essential role in plant metabolism.
    Martinoia E; Maeshima M; Neuhaus HE
    J Exp Bot; 2007; 58(1):83-102. PubMed ID: 17110589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic.
    Mendoza-Cózatl DG; Jobe TO; Hauser F; Schroeder JI
    Curr Opin Plant Biol; 2011 Oct; 14(5):554-62. PubMed ID: 21820943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants.
    Shi W; Zhang Y; Chen S; Polle A; Rennenberg H; Luo ZB
    Plant Cell Environ; 2019 Apr; 42(4):1087-1103. PubMed ID: 30375657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energization of vacuolar transport in plant cells and its significance under stress.
    Seidel T; Siek M; Marg B; Dietz KJ
    Int Rev Cell Mol Biol; 2013; 304():57-131. PubMed ID: 23809435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency.
    Luo ZB; He J; Polle A; Rennenberg H
    Biotechnol Adv; 2016 Nov; 34(6):1131-1148. PubMed ID: 27422434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana.
    Guo J; Xu W; Ma M
    J Hazard Mater; 2012 Jan; 199-200():309-13. PubMed ID: 22119299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuolar Transporters for Cadmium and Arsenic in Plants and their Applications in Phytoremediation and Crop Development.
    Zhang J; Martinoia E; Lee Y
    Plant Cell Physiol; 2018 Jul; 59(7):1317-1325. PubMed ID: 29361141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different responses of tonoplast proton pumps in cucumber roots to cadmium and copper.
    Kabała K; Janicka-Russak M; Kłobus G
    J Plant Physiol; 2010 Nov; 167(16):1328-35. PubMed ID: 20696494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants.
    Vera-Estrella R; Gómez-Méndez MF; Amezcua-Romero JC; Barkla BJ; Rosas-Santiago P; Pantoja O
    Planta; 2017 Sep; 246(3):433-451. PubMed ID: 28455771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification.
    Ramsay LM; Gadd GM
    FEMS Microbiol Lett; 1997 Jul; 152(2):293-8. PubMed ID: 9231423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balance between nitrogen use efficiency and cadmium tolerance in Brassica napus and Arabidopsis thaliana.
    Liao Q; Jian SF; Song HX; Guan CY; Lepo JE; Ismail AM; Zhang ZH
    Plant Sci; 2019 Jul; 284():57-66. PubMed ID: 31084879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanistic model of plant heavy metal tolerance.
    Thapa G; Sadhukhan A; Panda SK; Sahoo L
    Biometals; 2012 Jun; 25(3):489-505. PubMed ID: 22481367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport processes of solutes across the vacuolar membrane of higher plants.
    Martinoia E; Massonneau A; Frangne N
    Plant Cell Physiol; 2000 Nov; 41(11):1175-86. PubMed ID: 11092901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies.
    Noor I; Sohail H; Sun J; Nawaz MA; Li G; Hasanuzzaman M; Liu J
    Chemosphere; 2022 Sep; 303(Pt 3):135196. PubMed ID: 35659937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of V-PPase proton pump, singly or in combination with a NHX1 transporter, in transgenic tobacco improves copper tolerance and accumulation.
    Gouiaa S; Khoudi H
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):37037-37045. PubMed ID: 31745765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.