These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 2672948)
1. Neuronal networks underlying the escape response in goldfish. General implications for motor control. Faber DS; Fetcho JR; Korn H Ann N Y Acad Sci; 1989; 563():11-33. PubMed ID: 2672948 [No Abstract] [Full Text] [Related]
2. The motor output of the Mauthner cell, a reticulospinal command neuron. Nissanov J; Eaton RC; DiDomenico R Brain Res; 1990 May; 517(1-2):88-98. PubMed ID: 2376010 [TBL] [Abstract][Full Text] [Related]
3. A direct magnocellular-preopticospinal pathway in goldfish: implications for control of sex behavior. Demski LS; Sloan HE Neurosci Lett; 1985 Apr; 55(3):283-8. PubMed ID: 4011031 [TBL] [Abstract][Full Text] [Related]
4. Inputs from the posterior lateral line nerves upon the goldfish Mauthner cells. II. Evidence that the inhibitory components are mediated by interneurons of the recurrent collateral network. Faber DS; Korn H Brain Res; 1975 Oct; 96(2):349-56. PubMed ID: 1175018 [No Abstract] [Full Text] [Related]
5. Lateralization and adaptation of a continuously variable behavior following lesions of a reticulospinal command neuron. DiDomenico R; Nissanov J; Eaton RC Brain Res; 1988 Nov; 473(1):15-28. PubMed ID: 3208117 [TBL] [Abstract][Full Text] [Related]
6. Central cellular mechanisms underlying temperature-dependent changes in the goldfish startle-escape behavior. Preuss T; Faber DS J Neurosci; 2003 Jul; 23(13):5617-26. PubMed ID: 12843264 [TBL] [Abstract][Full Text] [Related]
7. Fictive swimming elicited by electrical stimulation of the midbrain in goldfish. Fetcho JR; Svoboda KR J Neurophysiol; 1993 Aug; 70(2):765-80. PubMed ID: 8410171 [TBL] [Abstract][Full Text] [Related]
8. Beating the competition: the reliability hypothesis for Mauthner axon size. Eaton RC; Hofve JC; Fetcho JR Brain Behav Evol; 1995; 45(4):183-94. PubMed ID: 7620869 [TBL] [Abstract][Full Text] [Related]
9. Comparison of fast startle responses between two elongate bony fish with an anguilliform type of locomotion and the implications for the underlying neuronal basis of escape behavior. Meyers JR; Copanas EH; Zottoli SJ Brain Behav Evol; 1998; 52(1):7-22. PubMed ID: 9667805 [TBL] [Abstract][Full Text] [Related]
11. Specificity of neural circuits that inhibit escape in crayfish. Berkowitz A; Vu ET; Krasne FB Ann N Y Acad Sci; 1998 Nov; 860():461-3. PubMed ID: 9928339 [No Abstract] [Full Text] [Related]
13. Neuronal and behavioural responses in rats during noxious stimulation of the tail. Mitchell D; Hellon RF Proc R Soc Lond B Biol Sci; 1977 May; 197(1127):169-94. PubMed ID: 17865 [No Abstract] [Full Text] [Related]
15. [Functional organization of escape circuits built in teleost hindbrain segments]. Oda Y Nihon Shinkei Seishin Yakurigaku Zasshi; 2008 Jun; 28(3):127-30. PubMed ID: 18646598 [TBL] [Abstract][Full Text] [Related]
16. Interactions between the neural networks for escape and swimming in goldfish. Svoboda KR; Fetcho JR J Neurosci; 1996 Jan; 16(2):843-52. PubMed ID: 8551364 [TBL] [Abstract][Full Text] [Related]
17. Phase-locking in goldfish saccular nerve fibres accounts for frequency discrimination capacities. Fay RR Nature; 1978 Sep; 275(5678):320-2. PubMed ID: 692710 [No Abstract] [Full Text] [Related]
18. [Escape Behaviors and Its Underlying Neuronal Circuits]. Oda Y Brain Nerve; 2015 Oct; 67(10):1173-83. PubMed ID: 26450070 [TBL] [Abstract][Full Text] [Related]
19. The direction change concept for reticulospinal control of goldfish escape. Foreman MB; Eaton RC J Neurosci; 1993 Oct; 13(10):4101-13. PubMed ID: 8410180 [TBL] [Abstract][Full Text] [Related]
20. Synchronous bursting in a subset of interneurons inhibitory to the goldfish Mauthner cell: synaptic mediation and plasticity. Charpier S; Behrends JC; Chang YT; Sur C; Korn H J Neurophysiol; 1994 Aug; 72(2):531-41. PubMed ID: 7983517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]