BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26729487)

  • 1. Cardiomyocyte Ca2+ dynamics: clinical perspectives.
    Aronsen JM; Louch WE; Sjaastad I
    Scand Cardiovasc J; 2016; 50(2):65-77. PubMed ID: 26729487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium Signaling and Transcriptional Regulation in Cardiomyocytes.
    Dewenter M; von der Lieth A; Katus HA; Backs J
    Circ Res; 2017 Sep; 121(8):1000-1020. PubMed ID: 28963192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Throughput Measurement of Ca++ Dynamics in Human Stem Cell-Derived Cardiomyocytes by Kinetic Image Cytometery: A Cardiac Risk Assessment Characterization Using a Large Panel of Cardioactive and Inactive Compounds.
    Lu HR; Whittaker R; Price JH; Vega R; Pfeiffer ER; Cerignoli F; Towart R; Gallacher DJ
    Toxicol Sci; 2015 Dec; 148(2):503-16. PubMed ID: 26358003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na(+)--Ca2+ exchange in the regulation of cardiac excitation-contraction coupling.
    Reuter H; Pott C; Goldhaber JI; Henderson SA; Philipson KD; Schwinger RH
    Cardiovasc Res; 2005 Aug; 67(2):198-207. PubMed ID: 15935336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Evolution of mechanisms of Ca(2+)-signaling. Role of Ca2+ in regulation of specialized functions of cardiomyocytes in chronic heart diseases].
    Shemarova IV; Nesterov VP
    Zh Evol Biokhim Fiziol; 2014; 50(6):420-7. PubMed ID: 25782282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.
    Altamirano J; Bers DM
    Circ Res; 2007 Sep; 101(6):590-7. PubMed ID: 17641229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-gated calcium channels function as Ca2+-activated signaling receptors.
    Atlas D
    Trends Biochem Sci; 2014 Feb; 39(2):45-52. PubMed ID: 24388968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NOD1, a new player in cardiac function and calcium handling.
    Delgado C; Ruiz-Hurtado G; Gómez-Hurtado N; González-Ramos S; Rueda A; Benito G; Prieto P; Zaragoza C; Delicado EG; Pérez-Sen R; Miras-Portugal MT; Núñez G; Boscá L; Fernández-Velasco M
    Cardiovasc Res; 2015 Jun; 106(3):375-86. PubMed ID: 25824149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-regulated transcriptional pathways in the normal and pathologic heart.
    Zarain-Herzberg A; Fragoso-Medina J; Estrada-Avilés R
    IUBMB Life; 2011 Oct; 63(10):847-55. PubMed ID: 21901815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polydatin modulates Ca(2+) handling, excitation-contraction coupling and β-adrenergic signaling in rat ventricular myocytes.
    Deng J; Liu W; Wang Y; Dong M; Zheng M; Liu J
    J Mol Cell Cardiol; 2012 Nov; 53(5):646-56. PubMed ID: 22921781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-mobility group box 1 (HMGB1) impaired cardiac excitation-contraction coupling by enhancing the sarcoplasmic reticulum (SR) Ca(2+) leak through TLR4-ROS signaling in cardiomyocytes.
    Zhang C; Mo M; Ding W; Liu W; Yan D; Deng J; Luo X; Liu J
    J Mol Cell Cardiol; 2014 Sep; 74():260-73. PubMed ID: 24937603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium sparks in human ventricular cardiomyocytes from patients with terminal heart failure.
    Lindner M; Brandt MC; Sauer H; Hescheler J; Böhle T; Beuckelmann DJ
    Cell Calcium; 2002 Apr; 31(4):175-82. PubMed ID: 12027382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of murine cardiac contractility by activation of α(1A)-adrenergic receptor-operated Ca(2+) entry.
    Mohl MC; Iismaa SE; Xiao XH; Friedrich O; Wagner S; Nikolova-Krstevski V; Wu J; Yu ZY; Feneley M; Fatkin D; Allen DG; Graham RM
    Cardiovasc Res; 2011 Jul; 91(2):310-9. PubMed ID: 21546445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging Intracellular Ca
    Campo A; Mongillo M
    Methods Mol Biol; 2019; 1925():111-125. PubMed ID: 30674021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts.
    Hohendanner F; Walther S; Maxwell JT; Kettlewell S; Awad S; Smith GL; Lonchyna VA; Blatter LA
    J Physiol; 2015 Mar; 593(6):1459-77. PubMed ID: 25416623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased cardiomyocyte function and Ca2+ transients in mice during early congestive heart failure.
    Mørk HK; Sjaastad I; Sande JB; Periasamy M; Sejersted OM; Louch WE
    J Mol Cell Cardiol; 2007 Aug; 43(2):177-86. PubMed ID: 17574269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inotropic response of cardiac ventricular myocytes to beta-adrenergic stimulation with isoproterenol exhibits diurnal variation: involvement of nitric oxide.
    Collins HE; Rodrigo GC
    Circ Res; 2010 Apr; 106(7):1244-52. PubMed ID: 20167926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPEG: a key regulator of cardiac calcium homeostasis.
    Campbell H; Aguilar-Sanchez Y; Quick AP; Dobrev D; Wehrens XHT
    Cardiovasc Res; 2021 Aug; 117(10):2175-2185. PubMed ID: 33067609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies.
    Sutanto H; Lyon A; Lumens J; Schotten U; Dobrev D; Heijman J
    Prog Biophys Mol Biol; 2020 Nov; 157():54-75. PubMed ID: 32188566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Mitochondrial Calcium Fluxes in Cardiomyocytes upon Mechanical Stretch-Induced Hypertrophy.
    Ramaccini D; Giorgi C; Matter ML
    Methods Mol Biol; 2022; 2475():215-222. PubMed ID: 35451760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.