These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2672974)

  • 41. The accumulation of malonyldialdehyde, an end product of membrane lipid peroxidation, can cause potassium leak in normal and sickle red blood cells.
    Jain SK; Ross JD; Levy GJ; Little RL; Duett J
    Biochem Med Metab Biol; 1989 Aug; 42(1):60-5. PubMed ID: 2775562
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deoxygenation-induced cation fluxes in sickle cells: relationship between net potassium efflux and net sodium influx.
    Joiner CH; Dew A; Ge DL
    Blood Cells; 1988; 13(3):339-58. PubMed ID: 3382745
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calcium-induced changes in polyphosphoinositides and phosphatidate in normal erythrocytes, sickle cells and hereditary pyropoikilocytes.
    Ponnappa BC; Greenquist AC; Shohet SB
    Biochim Biophys Acta; 1980 Jun; 598(3):494-501. PubMed ID: 6248110
    [No Abstract]   [Full Text] [Related]  

  • 44. Red cell membrane injury in sickle cell anaemia.
    Palek J
    Br J Haematol; 1977 Jan; 35(1):1-9. PubMed ID: 322695
    [No Abstract]   [Full Text] [Related]  

  • 45. Congenital hemolytic anemia with high sodium, low potassium red cells. I. Studies of membrane permeability.
    Zarkowsky HS; Oski FA; Sha'afi R; Shohet SB; Nathan DG
    N Engl J Med; 1968 Mar; 278(11):573-81. PubMed ID: 5637754
    [No Abstract]   [Full Text] [Related]  

  • 46. Red cell volume-related ion transport systems in hemoglobinopathies.
    Canessa M
    Hematol Oncol Clin North Am; 1991 Jun; 5(3):495-516. PubMed ID: 1650770
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Erythrocyte Na-K-Cl cotransport activity in low renin essential hypertensive patients. A 23Na nuclear magnetic resonance study.
    Cacciafesta M; Ferri C; Carlomagno A; De Angelis C; Scuteri A; Guidoni L; Luciani AM; Rosi A; Viti V; Santucci A
    Am J Hypertens; 1994 Feb; 7(2):151-8. PubMed ID: 8179850
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The formation of transferrin receptor-positive sickle reticulocytes with intermediate density is not determined by fetal hemoglobin content.
    Franco RS; Thompson H; Palascak M; Joiner CH
    Blood; 1997 Oct; 90(8):3195-203. PubMed ID: 9376603
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Passive sodium and potassium movements in sickle erythrocytes.
    Berkowitz LR; Orringer EP
    Am J Physiol; 1985 Sep; 249(3 Pt 1):C208-14. PubMed ID: 4037070
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Membrane phospholipid abnormalities in pathologic erythrocytes: a model for cell aging.
    Wagner G; Chiu DT; Schwartz RS; Lubin B
    Prog Clin Biol Res; 1985; 195():237-50. PubMed ID: 4059270
    [No Abstract]   [Full Text] [Related]  

  • 51. Prevention of red cell dehydration: a possible new treatment for sickle cell disease.
    Mueller BU; Brugnara C
    Pediatr Pathol Mol Med; 2001; 20(1):15-25. PubMed ID: 12673842
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Volume-dependent K+ transport in rabbit red blood cells comparison with oxygenated human SS cells.
    al-Rohil N; Jennings ML
    Am J Physiol; 1989 Jul; 257(1 Pt 1):C114-21. PubMed ID: 2750884
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studies on the mechanism of passive cation fluxes activated by deoxygenation of sickle cells.
    Joiner CH
    Prog Clin Biol Res; 1987; 240():229-35. PubMed ID: 3615489
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of K+ efflux and dehydration of sickle cells by [(dihydroindenyl)oxy]alkanoic acid: an inhibitor of the K+ Cl- cotransport system.
    Vitoux D; Olivieri O; Garay RP; Cragoe EJ; Galacteros F; Beuzard Y
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):4273-6. PubMed ID: 2726772
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Physiopathology of erythrocyte membrane transport].
    Brugnara C
    Haematologica; 1991 Jun; 76 Suppl 3():191-8. PubMed ID: 1752514
    [No Abstract]   [Full Text] [Related]  

  • 56. Sodium, potassium and calcium in erythrocytes in sickle-cell anemia.
    Statius van Eps LW; Schouten H; van Sloof PA Delden GJ
    Clin Chim Acta; 1971 Jul; 33(2):475-8. PubMed ID: 5119327
    [No Abstract]   [Full Text] [Related]  

  • 57. Calcium exchange and calcium-related effects in normal and sickle cell anemia erythrocytes.
    Cameron BF; Smariga P
    Prog Clin Biol Res; 1978; 20():105-22. PubMed ID: 148652
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Low potassium-type but not high potassium-type sheep red blood cells show passive K+ transport induced by low ionic strength.
    Erdmann A; Bernhardt I; Pittman SJ; Ellory JC
    Biochim Biophys Acta; 1991 Jan; 1061(1):85-8. PubMed ID: 1995059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The effect of NaK2Cl symport and chloride channel permeability on ion flux balance and on transmembrane ion distribution in different types of animal cells].
    Vereninov AA; Glushankova LN; Rubashkin AA
    Tsitologiia; 1997; 39(8):727-39. PubMed ID: 9490512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Electrolytic changes in thyrotoxicosis].
    Dinkov I; Minchev M; Nonchev I
    Vutr Boles; 1977; 16(6):38-42. PubMed ID: 602156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.