These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2672974)

  • 61. [Congenital hemolytic anemia with spherocytosis and erythrocyte cation abnormalities].
    Bernard JF; Afifi F; Hakim J; Boivin P
    Nouv Rev Fr Hematol; 1974; 14(4):439-52. PubMed ID: 4280554
    [No Abstract]   [Full Text] [Related]  

  • 62. Polyamines--sickling red blood cell interaction.
    Chun PW; Saffen EE; DiTore RJ; Rennert OM; Neinstein NH
    Biophys Chem; 1977 Apr; 6(3):321-35. PubMed ID: 18221
    [No Abstract]   [Full Text] [Related]  

  • 63. Erythrocyte disorders leading to potassium loss and cellular dehydration.
    Glader BE; Sullivan DW
    Prog Clin Biol Res; 1979; 30():503-13. PubMed ID: 531041
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Chloride-activated passive potassium transport in human erythrocytes.
    Dunham PB; Stewart GW; Ellory JC
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1711-5. PubMed ID: 6929518
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Erythrocyte composition in diarrheal dehydration.
    Hellerstein S; Surapathana L
    J Pediatr; 1971 Apr; 78(4):585-94. PubMed ID: 5547816
    [No Abstract]   [Full Text] [Related]  

  • 66. Disturbances of transmembranous sodium transport systems induced by ethanol in human erythrocytes. An approach to the pressor effect of alcohol.
    Coca A; Garay RP; Aguilera MT; De la Sierra A; Urbano-Márquez A
    Am J Hypertens; 1989 Oct; 2(10):784-7. PubMed ID: 2553070
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride.
    Dunham PB; Ellory JC
    J Physiol; 1981 Sep; 318():511-30. PubMed ID: 6798197
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The effect of deoxygenation on red cell density: significance for the pathophysiology of sickle cell anemia.
    Fabry ME; Nagel RL
    Blood; 1982 Dec; 60(6):1370-7. PubMed ID: 6291676
    [No Abstract]   [Full Text] [Related]  

  • 69. Monovalent cation composition and ATP and lipid content of irreversibly sickled cells.
    Clark MR; Unger RC; Shohet SB
    Blood; 1978 Jun; 51(6):1169-78. PubMed ID: 647122
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Erythrocyte dehydration in pathophysiology and treatment of sickle cell disease.
    Brugnara C
    Curr Opin Hematol; 1995 Mar; 2(2):132-8. PubMed ID: 9371983
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of 1-chloro-2,4-dinitrobenzene on K+ transport in normal and sickle human red blood cells.
    Muzyamba MC; Gibson JS
    J Physiol; 2003 Mar; 547(Pt 3):903-11. PubMed ID: 12576491
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In vitro inhibitory effects of disodium cromoglycate on ionic transports involved in sickle cell dehydration.
    Bizumukama L; Ferster A; Gulbis B; Kumps A; Cotton F
    Pharmacology; 2009; 83(5):318-22. PubMed ID: 19401631
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Congenital hemolytic anemia associated with dehydrated erythrocytes and increased potassium loss.
    Glader BE; Fortier N; Albala MM; Nathan DG
    N Engl J Med; 1974 Sep; 291(10):491-6. PubMed ID: 4851153
    [No Abstract]   [Full Text] [Related]  

  • 74. Intraerythrocytic cation metabolism in children with uremia undergoing hemodialysis.
    DeSanto NG; Trevisan M; DeColle S; DiMuro M; DeChiara F; Latte M; Franzese A; Iacono R; Capasso G; Capodicasa G
    J Lab Clin Med; 1987 Aug; 110(2):231-6. PubMed ID: 3598350
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Erythrocyte cation permeability induced by mechanical stress: a model for sickle cell cation loss.
    Johnson RM; Gannon SA
    Am J Physiol; 1990 Nov; 259(5 Pt 1):C746-51. PubMed ID: 2240192
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Non-electrolyte permeability of deoxygenated sickle cells compared.
    Ellory JC; Sequeira R; Constantine A; Wilkins RJ; Gibson JS
    Blood Cells Mol Dis; 2008; 41(1):44-9. PubMed ID: 18456522
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Deoxygenation-induced cation fluxes in sickle cells. III. Cation selectivity and response to pH and membrane potential.
    Joiner CH; Morris CL; Cooper ES
    Am J Physiol; 1993 Mar; 264(3 Pt 1):C734-44. PubMed ID: 8460677
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Oral magnesium supplements reduce erythrocyte dehydration in patients with sickle cell disease.
    De Franceschi L; Bachir D; Galacteros F; Tchernia G; Cynober T; Alper S; Platt O; Beuzard Y; Brugnara C
    J Clin Invest; 1997 Oct; 100(7):1847-52. PubMed ID: 9312186
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Alterations in membrane structure and transport properties in sickle cell erythrocytes.
    Kurantsin-Mills J; Kudo M; Addae SK
    Ghana Med J; 1973 Jun; 12(2):237. PubMed ID: 4805655
    [No Abstract]   [Full Text] [Related]  

  • 80. Na(+)-K(+)-2Cl- cotransport, Na+/H+ exchange, and cell volume in ferret erythrocytes.
    Mairbäurl H; Herth C
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1603-11. PubMed ID: 8944644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.