These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change. Gavazov K; Albrecht R; Buttler A; Dorrepaal E; Garnett MH; Gogo S; Hagedorn F; Mills RTE; Robroek BJM; Bragazza L Glob Chang Biol; 2018 Sep; 24(9):3911-3921. PubMed ID: 29569798 [TBL] [Abstract][Full Text] [Related]
5. Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ward SE; Ostle NJ; Oakley S; Quirk H; Henrys PA; Bardgett RD Ecol Lett; 2013 Oct; 16(10):1285-93. PubMed ID: 23953244 [TBL] [Abstract][Full Text] [Related]
6. A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations. Dommain R; Frolking S; Jeltsch-Thömmes A; Joos F; Couwenberg J; Glaser PH Glob Chang Biol; 2018 Nov; 24(11):5518-5533. PubMed ID: 30007100 [TBL] [Abstract][Full Text] [Related]
7. Warming impacts on boreal fen CO Laine AM; Mäkiranta P; Laiho R; Mehtätalo L; Penttilä T; Korrensalo A; Minkkinen K; Fritze H; Tuittila ES Glob Chang Biol; 2019 Jun; 25(6):1995-2008. PubMed ID: 30854735 [TBL] [Abstract][Full Text] [Related]
8. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration. Freeman C; Fenner N; Shirsat AH Philos Trans A Math Phys Eng Sci; 2012 Sep; 370(1974):4404-21. PubMed ID: 22869805 [TBL] [Abstract][Full Text] [Related]
9. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ward SE; Orwin KH; Ostle NJ; Briones JI; Thomson BC; Griffiths RI; Oakley S; Quirk H; Bardget RD Ecology; 2015 Jan; 96(1):113-23. PubMed ID: 26236896 [TBL] [Abstract][Full Text] [Related]
10. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog. Gill AL; Giasson MA; Yu R; Finzi AC Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635 [TBL] [Abstract][Full Text] [Related]
11. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra. Ylänne H; Stark S; Tolvanen A Glob Chang Biol; 2015 Oct; 21(10):3696-711. PubMed ID: 25950664 [TBL] [Abstract][Full Text] [Related]
12. No evidence for increased loss of old carbon in a temperate organic soil after 13 years of simulated climatic warming despite increased CO Briones MJI; Garnett MH; Ineson P Glob Chang Biol; 2021 May; 27(9):1836-1847. PubMed ID: 33528070 [TBL] [Abstract][Full Text] [Related]
13. Partitioning of the net CO Järveoja J; Nilsson MB; Gažovič M; Crill PM; Peichl M Glob Chang Biol; 2018 Aug; 24(8):3436-3451. PubMed ID: 29710420 [TBL] [Abstract][Full Text] [Related]
14. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Larmola T; Bubier JL; Kobyljanec C; Basiliko N; Juutinen S; Humphreys E; Preston M; Moore TR Glob Chang Biol; 2013 Dec; 19(12):3729-39. PubMed ID: 23868415 [TBL] [Abstract][Full Text] [Related]
15. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Voigt C; Marushchak ME; Mastepanov M; Lamprecht RE; Christensen TR; Dorodnikov M; Jackowicz-Korczyński M; Lindgren A; Lohila A; Nykänen H; Oinonen M; Oksanen T; Palonen V; Treat CC; Martikainen PJ; Biasi C Glob Chang Biol; 2019 May; 25(5):1746-1764. PubMed ID: 30681758 [TBL] [Abstract][Full Text] [Related]
16. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. Sihi D; Inglett PW; Gerber S; Inglett KS Glob Chang Biol; 2018 Jan; 24(1):e259-e274. PubMed ID: 28746792 [TBL] [Abstract][Full Text] [Related]
17. Role of recent climate change on carbon sequestration in peatland systems. Lunt PH; Fyfe RM; Tappin AD Sci Total Environ; 2019 Jun; 667():348-358. PubMed ID: 30833238 [TBL] [Abstract][Full Text] [Related]
18. Consistent centennial-scale change in European sub-Arctic peatland vegetation toward Sphagnum dominance-Implications for carbon sink capacity. Piilo SR; Väliranta MM; Amesbury MJ; Aquino-López MA; Charman DJ; Gallego-Sala A; Garneau M; Koroleva N; Kärppä M; Laine AM; Sannel ABK; Tuittila ES; Zhang H Glob Chang Biol; 2023 Mar; 29(6):1530-1544. PubMed ID: 36495084 [TBL] [Abstract][Full Text] [Related]
19. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. McPartland MY; Kane ES; Falkowski MJ; Kolka R; Turetsky MR; Palik B; Montgomery RA Glob Chang Biol; 2019 Jan; 25(1):93-107. PubMed ID: 30295397 [TBL] [Abstract][Full Text] [Related]
20. Aquatic export of young dissolved and gaseous carbon from a pristine boreal fen: Implications for peat carbon stock stability. Campeau A; Bishop KH; Billett MF; Garnett MH; Laudon H; Leach JA; Nilsson MB; Öquist MG; Wallin MB Glob Chang Biol; 2017 Dec; 23(12):5523-5536. PubMed ID: 28712133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]