BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

801 related articles for article (PubMed ID: 26730493)

  • 1. Design of NIR Chromenylium-Cyanine Fluorophore Library for "Switch-ON" and Ratiometric Detection of Bio-Active Species In Vivo.
    Wei Y; Cheng D; Ren T; Li Y; Zeng Z; Yuan L
    Anal Chem; 2016 Feb; 88(3):1842-9. PubMed ID: 26730493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of unique xanthene-cyanine fused near-infrared fluorescent fluorophores with superior chemical stability for biological fluorescence imaging.
    Chen H; Lin W; Cui H; Jiang W
    Chemistry; 2015 Jan; 21(2):733-45. PubMed ID: 25388080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemicyanine-based high resolution ratiometric near-infrared fluorescent probe for monitoring pH changes in vivo.
    Li Y; Wang Y; Yang S; Zhao Y; Yuan L; Zheng J; Yang R
    Anal Chem; 2015 Feb; 87(4):2495-503. PubMed ID: 25635470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular design strategies for near-infrared ratiometric fluorescent probes based on the unique spectral properties of aminocyanines.
    Kiyose K; Aizawa S; Sasaki E; Kojima H; Hanaoka K; Terai T; Urano Y; Nagano T
    Chemistry; 2009 Sep; 15(36):9191-200. PubMed ID: 19650089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Unique "Integration" Strategy for the Rational Design of Optically Tunable Near-Infrared Fluorophores.
    Chen H; Dong B; Tang Y; Lin W
    Acc Chem Res; 2017 Jun; 50(6):1410-1422. PubMed ID: 28492303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Donor and Ring-Fusing Engineering for Far-Red to Near-Infrared Triphenylpyrylium Fluorophores with Enhanced Fluorescence Performance for Sensing and Imaging.
    Wen SY; Zhang W; Ren TB; Zhang QL; Liu YP; Shi L; Hu R; Zhang XB; Yuan L
    Chemistry; 2019 May; 25(28):6973-6979. PubMed ID: 30901120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared cell-permeable Hg2+-selective ratiometric fluorescent chemodosimeters and fast indicator paper for MeHg+ based on tricarbocyanines.
    Guo Z; Zhu W; Zhu M; Wu X; Tian H
    Chemistry; 2010 Dec; 16(48):14424-32. PubMed ID: 21038328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared mito-specific fluorescent probe for ratiometric detection and imaging of alkaline phosphatase activity with high sensitivity.
    Zhang Q; Li S; Fu C; Xiao Y; Zhang P; Ding C
    J Mater Chem B; 2019 Jan; 7(3):443-450. PubMed ID: 32254731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe.
    Liu CH; Qi FP; Wen FB; Long LP; Liu AJ; Yang RH
    Methods Appl Fluoresc; 2018 Jan; 6(2):024001. PubMed ID: 29350185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unique type of pyrrole-based cyanine fluorophores with turn-on and ratiometric fluorescence signals at different pH regions for sensing pH in enzymes and living cells.
    He L; Lin W; Xu Q; Wei H
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22326-33. PubMed ID: 25408468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing NIR xanthene-chalcone fluorophores with large Stokes shifts for fluorescence imaging.
    Wang C; Yuan R; Ma S; Miao Q; Zhao X; Liu Y; Bi S; Chen G
    Analyst; 2024 Jun; 149(12):3372-3379. PubMed ID: 38712551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals.
    Yuan L; Lin W; Yang Y; Chen H
    J Am Chem Soc; 2012 Jan; 134(2):1200-11. PubMed ID: 22176300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of near-infrared fluorescent probes for in-vivo imaging].
    Kojima H
    Yakugaku Zasshi; 2008 Nov; 128(11):1653-63. PubMed ID: 18981701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific near-infrared fluorescent labelling of proteins on cysteine residues with meso-chloro-substituted heptamethine cyanine dyes.
    Canovas C; Bellaye PS; Moreau M; Romieu A; Denat F; Goncalves V
    Org Biomol Chem; 2018 Nov; 16(45):8831-8836. PubMed ID: 30411777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analogs of Changsha near-infrared dyes with large Stokes Shifts for bioimaging.
    Yuan L; Lin W; Chen H
    Biomaterials; 2013 Dec; 34(37):9566-71. PubMed ID: 24054843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of Novel Dark Quenchers and Their Application to Imaging Probes].
    Hanaoka K
    Yakugaku Zasshi; 2019; 139(2):277-283. PubMed ID: 30713240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular engineering of a dual emission near-infrared ratiometric fluorophore for the detection of pH at the organism level.
    Wang BL; Jiang C; Li K; Liu YH; Xie Y; Yu XQ
    Analyst; 2015 Jul; 140(13):4608-15. PubMed ID: 26016813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling in vivo.
    Zhou Y; Pei W; Zhang X; Chen W; Wu J; Yao C; Huang L; Zhang H; Huang W; Chye Loo JS; Zhang Q
    Biomaterials; 2015 Jun; 54():34-43. PubMed ID: 25907037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bright, color-tunable fluorescent dyes in the Vis/NIR region: establishment of new "tailor-made" multicolor fluorophores based on borondipyrromethene.
    Umezawa K; Matsui A; Nakamura Y; Citterio D; Suzuki K
    Chemistry; 2009; 15(5):1096-106. PubMed ID: 19117043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sensitive and selective near-infrared fluorescent probe for mercuric ions and its biological imaging applications.
    Tang B; Cui LJ; Xu KH; Tong LL; Yang GW; An LG
    Chembiochem; 2008 May; 9(7):1159-64. PubMed ID: 18338355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.