These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26730608)

  • 21. Ab Initio Molecular Dynamics Using Recursive, Spatially Separated, Overlapping Model Subsystems Mixed within an ONIOM-Based Fragmentation Energy Extrapolation Technique.
    Li J; Iyengar SS
    J Chem Theory Comput; 2015 Sep; 11(9):3978-91. PubMed ID: 26575894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fragment-Based Calculations of Enzymatic Thermochemistry Require Dielectric Boundary Conditions.
    Bowling PE; Broderick DR; Herbert JM
    J Phys Chem Lett; 2023 Apr; 14(16):3826-3834. PubMed ID: 37061921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of Different Fragmentation Strategies on a Variety of Large Peptides: Implementation of a Low Level of Theory in Fragment-Based Methods Can Be a Crucial Factor.
    Saha A; Raghavachari K
    J Chem Theory Comput; 2015 May; 11(5):2012-23. PubMed ID: 26574406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method.
    Neese F; Wennmohs F; Hansen A
    J Chem Phys; 2009 Mar; 130(11):114108. PubMed ID: 19317532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LOOPER: a molecular mechanics-based algorithm for protein loop prediction.
    Spassov VZ; Flook PK; Yan L
    Protein Eng Des Sel; 2008 Feb; 21(2):91-100. PubMed ID: 18194981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.
    Liu J; Zhu T; Wang X; He X; Zhang JZ
    J Chem Theory Comput; 2015 Dec; 11(12):5897-905. PubMed ID: 26642993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates.
    Li S; Li W; Ma J
    Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ab initio quantum mechanical study of the binding energies of human estrogen receptor alpha with its ligands: an application of fragment molecular orbital method.
    Fukuzawa K; Kitaura K; Uebayasi M; Nakata K; Kaminuma T; Nakano T
    J Comput Chem; 2005 Jan; 26(1):1-10. PubMed ID: 15521089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning.
    Volkov A; Coppens P
    J Comput Chem; 2004 May; 25(7):921-34. PubMed ID: 15027105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved correlation energy extrapolation schemes based on local pair natural orbital methods.
    Liakos DG; Neese F
    J Phys Chem A; 2012 May; 116(19):4801-16. PubMed ID: 22489633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular energies from an incremental fragmentation method.
    Meitei OR; Heßelmann A
    J Chem Phys; 2016 Feb; 144(8):084109. PubMed ID: 26931683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of the Electrostatically Embedded Many-Body Expansion to Microsolvation of Ammonia in Water Clusters.
    Sorkin A; Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2008 May; 4(5):683-8. PubMed ID: 26621082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A generalized many-body expansion and a unified view of fragment-based methods in electronic structure theory.
    Richard RM; Herbert JM
    J Chem Phys; 2012 Aug; 137(6):064113. PubMed ID: 22897261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy correctors for accurate prediction of molecular energies.
    Seminario JM; Maffei MG; Agapito LA; Salazar PF
    J Phys Chem A; 2006 Jan; 110(3):1060-4. PubMed ID: 16420008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins.
    Yamazaki T; Kovalenko A
    J Phys Chem B; 2011 Jan; 115(2):310-8. PubMed ID: 21166382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.