These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 26730613)
1. Electrostatically Enhanced Thioureas. Fan Y; Kass SR Org Lett; 2016 Jan; 18(2):188-91. PubMed ID: 26730613 [TBL] [Abstract][Full Text] [Related]
2. Quantification of Catalytic Activity for Electrostatically Enhanced Thioureas via Reaction Kinetics and UV-vis Spectroscopic Measurement. Fan Y; Payne C; Kass SR J Org Chem; 2018 Sep; 83(18):10855-10863. PubMed ID: 30021436 [TBL] [Abstract][Full Text] [Related]
3. N,N'-Bis[3,5-bis(trifluoromethyl)phenyl]thiourea: a privileged motif for catalyst development. Zhang Z; Bao Z; Xing H Org Biomol Chem; 2014 May; 12(20):3151-62. PubMed ID: 24710861 [TBL] [Abstract][Full Text] [Related]
4. Computational Study on the Synergic Effect of Brønsted Acid and Hydrogen-Bonding Catalysis for the Dearomatization Reaction of Phenols with Diazo Functionality. Yanagawa M; Kobayashi M; Ikeda M; Harada S; Nemoto T Chem Pharm Bull (Tokyo); 2020; 68(11):1104-1108. PubMed ID: 33132378 [TBL] [Abstract][Full Text] [Related]
5. Chiral amine-thioureas bearing multiple hydrogen bonding donors: highly efficient organocatalysts for asymmetric Michael addition of acetylacetone to nitroolefins. Wang CJ; Zhang ZH; Dong XQ; Wu XJ Chem Commun (Camb); 2008 Mar; (12):1431-3. PubMed ID: 18338046 [TBL] [Abstract][Full Text] [Related]
6. Bifunctional hydrogen-bond donors that bear a quinazoline or benzothiadiazine skeleton for asymmetric organocatalysis. Inokuma T; Furukawa M; Uno T; Suzuki Y; Yoshida K; Yano Y; Matsuzaki K; Takemoto Y Chemistry; 2011 Sep; 17(37):10470-7. PubMed ID: 21812044 [TBL] [Abstract][Full Text] [Related]
7. Readily available hydrogen bond catalysts for the asymmetric transfer hydrogenation of nitroolefins. Schneider JF; Lauber MB; Muhr V; Kratzer D; Paradies J Org Biomol Chem; 2011 Jun; 9(11):4323-7. PubMed ID: 21494703 [TBL] [Abstract][Full Text] [Related]
8. Experimental and Theoretical Studies in Hydrogen-Bonding Organocatalysis. Žabka M; Šebesta R Molecules; 2015 Aug; 20(9):15500-24. PubMed ID: 26343615 [TBL] [Abstract][Full Text] [Related]
9. Brønsted acid catalyzed Morita-Baylis-Hillman reaction: a new mechanistic view for thioureas revealed by ESI-MS(/MS) monitoring and DFT calculations. Amarante GW; Benassi M; Milagre HM; Braga AA; Maseras F; Eberlin MN; Coelho F Chemistry; 2009 Nov; 15(45):12460-9. PubMed ID: 19813234 [TBL] [Abstract][Full Text] [Related]
10. Squaramides: bridging from molecular recognition to bifunctional organocatalysis. Alemán J; Parra A; Jiang H; Jørgensen KA Chemistry; 2011 Jun; 17(25):6890-9. PubMed ID: 21590822 [TBL] [Abstract][Full Text] [Related]
11. Enantio- and diastereoselective asymmetric addition of 1,3-dicarbonyl compounds to nitroalkenes in a doubly stereocontrolled manner catalyzed by bifunctional rosin-derived amine thiourea catalysts. Jiang X; Zhang Y; Liu X; Zhang G; Lai L; Wu L; Zhang J; Wang R J Org Chem; 2009 Aug; 74(15):5562-7. PubMed ID: 19552379 [TBL] [Abstract][Full Text] [Related]
12. Conformational Control of Chiral Amido-Thiourea Catalysts Enables Improved Activity and Enantioselectivity. Lehnherr D; Ford DD; Bendelsmith AJ; Kennedy CR; Jacobsen EN Org Lett; 2016 Jul; 18(13):3214-7. PubMed ID: 27294369 [TBL] [Abstract][Full Text] [Related]
13. Intra- and intermolecular hydrogen bonding and conformation in 1-acyl thioureas: an experimental and theoretical approach on 1-(2-chlorobenzoyl)thiourea. Saeed A; Khurshid A; Bolte M; Fantoni AC; Erben MF Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 143():59-66. PubMed ID: 25710115 [TBL] [Abstract][Full Text] [Related]
14. Chiral Thioureas-Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry. Steppeler F; Iwan D; Wojaczyńska E; Wojaczyński J Molecules; 2020 Jan; 25(2):. PubMed ID: 31963671 [TBL] [Abstract][Full Text] [Related]
15. Organocatalytic conjugate addition promoted by multi-hydrogen-bond cooperation: access to chiral 2-amino-3-nitrile-chromenes. Li W; Huang J; Wang J Org Biomol Chem; 2013 Jan; 11(3):400-6. PubMed ID: 23192677 [TBL] [Abstract][Full Text] [Related]
16. Molecular Transformation Based on an Innovative Catalytic System. Takemoto Y Chem Pharm Bull (Tokyo); 2021; 69(9):819-831. PubMed ID: 34470946 [TBL] [Abstract][Full Text] [Related]
17. Highly enantioselective Michael addition of diethyl malonate to chalcones catalyzed by cinchona alkaloids-derivatived bifunctional tertiary amine-thioureas bearing multiple hydrogen-bonding donors. Liu Y; Wang X; Wang X; He W Org Biomol Chem; 2014 May; 12(20):3163-6. PubMed ID: 24682148 [TBL] [Abstract][Full Text] [Related]
18. Novel ferrocene-based bifunctional amine-thioureas for asymmetric Michael addition of acetylacetone to nitroolefins. Ren X; He C; Feng Y; Chai Y; Yao W; Chen W; Zhang S Org Biomol Chem; 2015 May; 13(17):5054-60. PubMed ID: 25832649 [TBL] [Abstract][Full Text] [Related]
19. Recent advances in asymmetric organocatalysis mediated by bifunctional amine-thioureas bearing multiple hydrogen-bonding donors. Fang X; Wang CJ Chem Commun (Camb); 2015 Jan; 51(7):1185-97. PubMed ID: 25364797 [TBL] [Abstract][Full Text] [Related]
20. Double diastereocontrol in bifunctional thiourea organocatalysis: iterative Michael-Michael-Henry sequence regulated by the configuration of chiral catalysts. Varga S; Jakab G; Drahos L; Holczbauer T; Czugler M; Soós T Org Lett; 2011 Oct; 13(20):5416-9. PubMed ID: 21916428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]