These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26730705)

  • 1. The Primary Visual Cortex Is Differentially Modulated by Stimulus-Driven and Top-Down Attention.
    Bekisz M; Bogdan W; Ghazaryan A; Waleszczyk WJ; Kublik E; Wróbel A
    PLoS One; 2016; 11(1):e0145379. PubMed ID: 26730705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct effects of trial-driven and task Set-related control in primary visual cortex.
    Griffis JC; Elkhetali AS; Vaden RJ; Visscher KM
    Neuroimage; 2015 Oct; 120():285-297. PubMed ID: 26163806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attention-dependent coupling between beta activities recorded in the cat's thalamic and cortical representations of the central visual field.
    Bekisz M; Wróbel A
    Eur J Neurosci; 2003 Jan; 17(2):421-6. PubMed ID: 12542680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explicit attention interferes with selective emotion processing in human extrastriate cortex.
    Schupp HT; Stockburger J; Bublatzky F; Junghöfer M; Weike AI; Hamm AO
    BMC Neurosci; 2007 Feb; 8():16. PubMed ID: 17316444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top-Down Beta Enhances Bottom-Up Gamma.
    Richter CG; Thompson WH; Bosman CA; Fries P
    J Neurosci; 2017 Jul; 37(28):6698-6711. PubMed ID: 28592697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli.
    Motter BC
    J Neurophysiol; 1993 Sep; 70(3):909-19. PubMed ID: 8229178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of beta and gamma activity in corticothalamic system of cats attending to visual stimuli.
    Bekisz M; Wróbel A
    Neuroreport; 1999 Nov; 10(17):3589-94. PubMed ID: 10619649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow fluctuations in attentional control of sensory cortex.
    Kam JW; Dao E; Farley J; Fitzpatrick K; Smallwood J; Schooler JW; Handy TC
    J Cogn Neurosci; 2011 Feb; 23(2):460-70. PubMed ID: 20146593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention Modulates TMS-Locked Alpha Oscillations in the Visual Cortex.
    Herring JD; Thut G; Jensen O; Bergmann TO
    J Neurosci; 2015 Oct; 35(43):14435-47. PubMed ID: 26511236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attention Decreases Phase-Amplitude Coupling, Enhancing Stimulus Discriminability in Cortical Area MT.
    Esghaei M; Daliri MR; Treue S
    Front Neural Circuits; 2015; 9():82. PubMed ID: 26733820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative precision of top-down attentional modulations is lower in early visual cortex compared to mid- and high-level visual areas.
    Park S; Serences JT
    J Neurophysiol; 2022 Feb; 127(2):504-518. PubMed ID: 35020526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociating bottom-up and top-down processes in a manual stimulus-response compatibility task.
    Cieslik EC; Zilles K; Kurth F; Eickhoff SB
    J Neurophysiol; 2010 Sep; 104(3):1472-83. PubMed ID: 20573974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attention improves encoding of task-relevant features in the human visual cortex.
    Jehee JF; Brady DK; Tong F
    J Neurosci; 2011 Jun; 31(22):8210-9. PubMed ID: 21632942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.
    Green JJ; Boehler CN; Roberts KC; Chen LC; Krebs RM; Song AW; Woldorff MG
    J Neurosci; 2017 Aug; 37(33):7803-7810. PubMed ID: 28698387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Appearing and disappearing stimuli trigger a reflexive modulation of visual cortical activity.
    Hopfinger JB; Maxwell JS
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):48-56. PubMed ID: 15907377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex.
    Luck SJ; Chelazzi L; Hillyard SA; Desimone R
    J Neurophysiol; 1997 Jan; 77(1):24-42. PubMed ID: 9120566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural mechanism of dynamic gating of task-relevant information by top-down influence in primary visual cortex.
    Kamiyama A; Fujita K; Kashimori Y
    Biosystems; 2016 Dec; 150():138-148. PubMed ID: 27693625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temporal predictability on exogenous attentional modulation of feedforward processing in the striate cortex.
    Dassanayake TL; Michie PT; Fulham R
    Int J Psychophysiol; 2016 Jul; 105():9-16. PubMed ID: 27114044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attention and sensory gain control: a peripheral visual process?
    Handy TC; Khoe W
    J Cogn Neurosci; 2005 Dec; 17(12):1936-49. PubMed ID: 16356330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase shifts in high-beta- and low-gamma-band local field potentials predict the focus of visual spatial attention.
    Mock VL; Luke KL; Hembrook-Short JR; Briggs F
    J Neurophysiol; 2019 Mar; 121(3):799-822. PubMed ID: 30540498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.