These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26730836)

  • 1. Towards a general growth model for graphene CVD on transition metal catalysts.
    Cabrero-Vilatela A; Weatherup RS; Braeuninger-Weimer P; Caneva S; Hofmann S
    Nanoscale; 2016 Jan; 8(4):2149-58. PubMed ID: 26730836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of Graphene Growth Alloy Catalysts Using High-Throughput Machine Learning.
    Li X; Shi JQ; Page AJ
    Nano Lett; 2023 Nov; 23(21):9796-9802. PubMed ID: 37890870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Growth of Graphene on Ni-Cu Alloy Thin Films at a Low Temperature and Its Carbon Diffusion Mechanism.
    Dong Y; Guo S; Mao H; Xu C; Xie Y; Cheng C; Mao X; Deng J; Pan G; Sun J
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31744237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical vapour deposition of graphene on copper-nickel alloys: the simulation of a thermodynamic and kinetic approach.
    Al-Hilfi SH; Derby B; Martin PA; Whitehead JC
    Nanoscale; 2020 Jul; 12(28):15283-15294. PubMed ID: 32647854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Ni atomic fraction on active species of graphene growth on Cu-Ni alloy catalysts: a density functional theory study.
    Yutomo EB; Noor FA; Winata T
    Phys Chem Chem Phys; 2022 Dec; 25(1):708-723. PubMed ID: 36504109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic control of catalytic CVD for high-quality graphene at low temperatures.
    Weatherup RS; Dlubak B; Hofmann S
    ACS Nano; 2012 Nov; 6(11):9996-10003. PubMed ID: 23025628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of chemical vapor deposition of graphene and related applications.
    Zhang Y; Zhang L; Zhou C
    Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple growth of graphene from a pre-dissolved carbon source.
    Fazi A; Nylander A; Zehri A; Sun J; Malmberg P; Ye L; Liu J; Fu Y
    Nanotechnology; 2020 Aug; 31(34):345601. PubMed ID: 32369782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth.
    Wang L; Zhang X; Chan HL; Yan F; Ding F
    J Am Chem Soc; 2013 Mar; 135(11):4476-82. PubMed ID: 23444843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Vapor Deposition of Bernal-Stacked Graphene on a Cu Surface by Breaking the Carbon Solubility Symmetry in Cu Foils.
    Yoo MS; Lee HC; Lee S; Lee SB; Lee NS; Cho K
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28635145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing Ultralong Carbon Nanotube Growth from Methane over Mono- and Bi-Metallic Iron Chloride Catalysts.
    Yick T; Gangoli VS; Orbaek White A
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What are the active carbon species during graphene chemical vapor deposition growth?
    Shu H; Tao XM; Ding F
    Nanoscale; 2015 Feb; 7(5):1627-34. PubMed ID: 25553809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How graphene crosses a grain boundary on the catalyst surface during chemical vapour deposition growth.
    Dong J; Zhang L; Zhang K; Ding F
    Nanoscale; 2018 Apr; 10(15):6878-6883. PubMed ID: 29633768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the Cu substrate in the growth of ultra-flat crack-free highly-crystalline single-layer graphene.
    Huet B; Raskin JP
    Nanoscale; 2018 Nov; 10(46):21898-21909. PubMed ID: 30431636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma-Enhanced Chemical Vapor Deposition of Acetylene on Codeposited Bimetal Catalysts Increasing Graphene Sheet Continuity Under Low-Temperature Growth Conditions.
    Tracy J; Zietz O; Olson S; Jiao J
    Nanoscale Res Lett; 2019 Oct; 14(1):335. PubMed ID: 31659521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth.
    Wang X; Yuan Q; Li J; Ding F
    Nanoscale; 2017 Aug; 9(32):11584-11589. PubMed ID: 28770913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature growth of fully covered single-layer graphene using a CoCu catalyst.
    Sugime H; D'ArsiƩ L; Esconjauregui S; Zhong G; Wu X; Hildebrandt E; Sezen H; Amati M; Gregoratti L; Weatherup RS; Robertson J
    Nanoscale; 2017 Oct; 9(38):14467-14475. PubMed ID: 28926077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.