BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26730838)

  • 1. Porphyrin-loaded nanoparticles for cancer theranostics.
    Zhou Y; Liang X; Dai Z
    Nanoscale; 2016 Jul; 8(25):12394-405. PubMed ID: 26730838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy.
    Rabiee N; Yaraki MT; Garakani SM; Garakani SM; Ahmadi S; Lajevardi A; Bagherzadeh M; Rabiee M; Tayebi L; Tahriri M; Hamblin MR
    Biomaterials; 2020 Feb; 232():119707. PubMed ID: 31874428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Selectivity and in vivo Biodistribution of NRP-1
    Gries M; Thomas N; Daouk J; Rocchi P; Choulier L; Jubréaux J; Pierson J; Reinhard A; Jouan-Hureaux V; Chateau A; Acherar S; Frochot C; Lux F; Tillement O; Barberi-Heyob M
    Int J Nanomedicine; 2020; 15():8739-8758. PubMed ID: 33223826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Porphyrin-Based Inorganic Nanoparticles for Cancer Treatment.
    Montaseri H; Kruger CA; Abrahamse H
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current trends in pyrrole and porphyrin-derived nanoscale materials for biomedical applications.
    Fathi P; Pan D
    Nanomedicine (Lond); 2020 Oct; 15(25):2493-2515. PubMed ID: 32975469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activatable Hybrid Nanotheranostics for Tetramodal Imaging and Synergistic Photothermal/Photodynamic Therapy.
    Goel S; Ferreira CA; Chen F; Ellison PA; Siamof CM; Barnhart TE; Cai W
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29266476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifications of Porphyrins and Hydroporphyrins for Their Solubilization in Aqueous Media.
    Luciano M; Brückner C
    Molecules; 2017 Jun; 22(6):. PubMed ID: 28608838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics.
    Fusco L; Gazzi A; Peng G; Shin Y; Vranic S; Bedognetti D; Vitale F; Yilmazer A; Feng X; Fadeel B; Casiraghi C; Delogu LG
    Theranostics; 2020; 10(12):5435-5488. PubMed ID: 32373222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Characterization of Novel Fluoro-glycosylated Porphyrins that can be Utilized as Theranostic Agents.
    Arja K; Elgland M; Appelqvist H; Konradsson P; Lindgren M; Nilsson KPR
    ChemistryOpen; 2018 Jul; 7(7):495-503. PubMed ID: 30003003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic.
    Liu Y; Chen Y; Fei W; Zheng C; Zheng Y; Tang M; Qian Y; Zhang X; Zhao M; Zhang M; Wang F
    Front Bioeng Biotechnol; 2021; 9():733792. PubMed ID: 34557478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trends towards Biomimicry in Theranostics.
    Evangelopoulos M; Parodi A; Martinez JO; Tasciotti E
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30134564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metalloporphyrin Nanoparticles: Coordinating Diverse Theranostic Functions.
    Shao S; Rajendiran V; Lovell JF
    Coord Chem Rev; 2019 Jan; 379():99-120. PubMed ID: 30559508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-Soluble Star Polymer as a Potential Photoactivated Nanotool for Lysozyme Degradation.
    Mezzina L; Nicosia A; Barone L; Vento F; Mineo PG
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38276709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosensitizers-Loaded Nanocarriers for Enhancement of Photodynamic Therapy in Melanoma Treatment.
    Udrea AM; Smarandache A; Dinache A; Mares C; Nistorescu S; Avram S; Staicu A
    Pharmaceutics; 2023 Aug; 15(8):. PubMed ID: 37631339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single Small Molecule-Assembled Mitochondria Targeting Nanofibers for Enhanced Photodynamic Cancer Therapy in Vivo.
    Lin K; Ma Z; Li J; Tang M; Lindstrom A; Ramachandran M; Zhu S; Lin TY; Zhang L; Li Y
    Adv Funct Mater; 2021 Mar; 31(10):. PubMed ID: 37441230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterials for photothermal cancer therapy.
    Duan S; Hu Y; Zhao Y; Tang K; Zhang Z; Liu Z; Wang Y; Guo H; Miao Y; Du H; Yang D; Li S; Zhang J
    RSC Adv; 2023 May; 13(21):14443-14460. PubMed ID: 37180014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the effect of a cell penetrating peptide (TAT) towards tailoring the targeting efficacy and tumor uptake of porphyrin.
    Guleria M; Suman SK; Kumar N; Sharma AK; Amirdhanayagam J; Sarma HD; Satpati D; Das T
    RSC Med Chem; 2022 Nov; 13(11):1378-1390. PubMed ID: 36439980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy.
    Shi X; Tian Y; Liu Y; Xiong Z; Zhai S; Chu S; Gao F
    Front Oncol; 2022; 12():939365. PubMed ID: 35898892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porphyrin NanoMetal-Organic Frameworks as Cancer Theranostic Agents.
    Figueira F; Tomé JPC; Paz FAA
    Molecules; 2022 May; 27(10):. PubMed ID: 35630585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological Evaluation of Photodynamic Effect Mediated by Nanoparticles with Embedded Porphyrin Photosensitizer.
    Žárská L; Malá Z; Langová K; Malina L; Binder S; Bajgar R; Henke P; Mosinger J; Kolářová H
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.