BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26730952)

  • 1. Potential Sources of High Frequency and Biphonic Vocalization in the Dhole (Cuon alpinus).
    Frey R; Volodin IA; Fritsch G; Volodina EV
    PLoS One; 2016; 11(1):e0146330. PubMed ID: 26730952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Savannah roars: The vocal anatomy and the impressive rutting calls of male impala (Aepyceros melampus) - highlighting the acoustic correlates of a mobile larynx.
    Frey R; Volodin IA; Volodina EV; Efremova KO; Menges V; Portas R; Melzheimer J; Fritsch G; Gerlach C; von Dörnberg K
    J Anat; 2020 Mar; 236(3):398-424. PubMed ID: 31777085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The remarkable vocal anatomy of the koala (Phascolarctos cinereus): insights into low-frequency sound production in a marsupial species.
    Frey R; Reby D; Fritsch G; Charlton BD
    J Anat; 2018 Apr; 232(4):575-595. PubMed ID: 29460389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ancient DNA from the Asiatic Wild Dog (
    Taron UH; Paijmans JLA; Barlow A; Preick M; Iyengar A; Drăgușin V; Vasile Ș; Marciszak A; Roblíčková M; Hofreiter M
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33499169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of biphonation and source-filter interactions in the bugles of male North American wapiti (Cervus canadensis).
    Reby D; Wyman MT; Frey R; Passilongo D; Gilbert J; Locatelli Y; Charlton BD
    J Exp Biol; 2016 Apr; 219(Pt 8):1224-36. PubMed ID: 27103677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Function of the laryngeal muscles in the control of the fundamental frequency of voice].
    Ayache S; Fernandes M; Ouaknine M; Giovanni A
    Ann Otolaryngol Chir Cervicofac; 2002 Sep; 119(4):243-51. PubMed ID: 12410121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamental frequency and tracheal pressure during three types of vocalizations elicited from anesthetized dogs.
    Solomon NP; Luschei ES; Liu K
    J Voice; 1995 Dec; 9(4):403-12. PubMed ID: 8574306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive measurement of traveling wave velocity in the canine larynx.
    Nasri S; Sercarz JA; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):758-66. PubMed ID: 7944166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional differences between the two bellies of the cricothyroid muscle.
    Hong KH; Ye M; Kim YM; Kevorkian KF; Kreiman J; Berke GS
    Otolaryngol Head Neck Surg; 1998 May; 118(5):714-22. PubMed ID: 9591880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear phenomena in the natural howling of a dog-wolf mix.
    Riede T; Herzel H; Mehwald D; Seidner W; Trumler E; Böhme G; Tembrock G
    J Acoust Soc Am; 2000 Oct; 108(4):1435-42. PubMed ID: 11051469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species.
    Titze I; Riede T; Mau T
    PLoS Comput Biol; 2016 Jun; 12(6):e1004907. PubMed ID: 27309543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laryngeal biomechanics and vocal communication in the squirrel monkey (Saimiri boliviensis).
    Brown CH; Alipour F; Berry DA; Montequin D
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2114-26. PubMed ID: 12703722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Every dog has its prey: Range-wide assessment of links between diet patterns, livestock depredation and human interactions for an endangered carnivore.
    Srivathsa A; Sharma S; Oli MK
    Sci Total Environ; 2020 Apr; 714():136798. PubMed ID: 31986391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional electrical stimulation of laryngeal adductor muscle restores mobility of vocal fold and improves voice sounds in cats with unilateral laryngeal paralysis.
    Katada A; Nonaka S; Adachi M; Kunibe I; Arakawa T; Imada M; Hayashi T; Zealear DL; Harabuchi Y
    Neurosci Res; 2004 Oct; 50(2):153-9. PubMed ID: 15380322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of a low frequency sound source in Mysticeti (baleen whales): anatomical establishment of a vocal fold homolog.
    Reidenberg JS; Laitman JT
    Anat Rec (Hoboken); 2007 Jun; 290(6):745-59. PubMed ID: 17516447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques.
    Fitch WT
    J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1213-22. PubMed ID: 9265764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization.
    Riede T
    J Neurophysiol; 2011 Nov; 106(5):2580-92. PubMed ID: 21832032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A basic study on the vocal fold vibration from the viewpoint of the layer system of the vocal fold.
    Tsuzuki T; Fujioka T; Fukuda H; Ohki K; Kawasaki Y; Kita K
    Keio J Med; 1988 Jun; 37(2):144-54. PubMed ID: 3172619
    [No Abstract]   [Full Text] [Related]  

  • 20. Interactions of subglottal pressure and neuromuscular activation on fundamental frequency and intensity.
    Chhetri DK; Park SJ
    Laryngoscope; 2016 May; 126(5):1123-30. PubMed ID: 26971707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.