These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26731047)

  • 21. Squalene cyclase and oxidosqualene cyclase from a fern.
    Shinozaki J; Shibuya M; Masuda K; Ebizuka Y
    FEBS Lett; 2008 Jan; 582(2):310-8. PubMed ID: 18154734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Squalene hopene cyclases and oxido squalene cyclases: potential targets for regulating cyclisation reactions.
    Nair IM; Kochupurackal J
    Biotechnol Lett; 2023 Jun; 45(5-6):573-588. PubMed ID: 37055654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic synthesis of cyclic triterpenes.
    Abe I
    Nat Prod Rep; 2007 Dec; 24(6):1311-31. PubMed ID: 18033581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reviewing the polyolefin cyclization reaction of the c(35) polyprene catalyzed by squalene-hopene cyclase.
    Hoshino T; Kumai Y; Sato T
    Chemistry; 2009; 15(9):2091-100. PubMed ID: 19142932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Occurrence of Cationic Intermediates and Deficient Control during the Enzymatic Cyclization of Squalene to Hopanoids.
    Pale-Grosdemange C; Feil C; Rohmer M; Poralla K
    Angew Chem Int Ed Engl; 1998 Sep; 37(16):2237-2240. PubMed ID: 29711445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prokaryotic squalene-hopene cyclases can be converted to citronellal cyclases by single amino acid exchange.
    Siedenburg G; Breuer M; Jendrossek D
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1571-80. PubMed ID: 22526778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Do the substituent effects affect conformational freedom of squalene in hopene biosynthesis?
    Nowosielski M; Hoffmann M
    J Mol Model; 2011 Sep; 17(9):2169-74. PubMed ID: 21562825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 1-methylidenesqualene and 25-methylidenesqualene as active-site probes for bacterial squalene:hopene cyclase.
    Tanaka H; Noguchi H; Abe I
    Org Lett; 2004 Mar; 6(5):803-6. PubMed ID: 14986979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Squalene hopene cyclases: highly promiscuous and evolvable catalysts for stereoselective CC and CX bond formation.
    Hammer SC; Syrén PO; Seitz M; Nestl BM; Hauer B
    Curr Opin Chem Biol; 2013 Apr; 17(2):293-300. PubMed ID: 23485581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Terpene Cyclases from Social Amoebae.
    Rabe P; Rinkel J; Nubbemeyer B; Köllner TG; Chen F; Dickschat JS
    Angew Chem Int Ed Engl; 2016 Dec; 55(49):15420-15423. PubMed ID: 27862766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stereochemical investigations of the Tetrahymena cyclase, a model system for euphane/tirucallane biosynthesis.
    Giner JL; Feng J
    Org Biomol Chem; 2017 Mar; 15(13):2823-2830. PubMed ID: 28287229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conserved tyr residues determine functions of Alicyclobacillus acidocaldarius squalene-hopene cyclase.
    Füll C; Poralla K
    FEMS Microbiol Lett; 2000 Feb; 183(2):221-4. PubMed ID: 10675587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The triterpene cyclase protein family: a systematic analysis.
    Racolta S; Juhl PB; Sirim D; Pleiss J
    Proteins; 2012 Aug; 80(8):2009-19. PubMed ID: 22488823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blocking Deprotonation with Retention of Aromaticity in a Plant ent-Copalyl Diphosphate Synthase Leads to Product Rearrangement.
    Potter KC; Zi J; Hong YJ; Schulte S; Malchow B; Tantillo DJ; Peters RJ
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):634-8. PubMed ID: 26603275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Triterpene cyclases from Oryza sativa L.: cycloartenol, parkeol and achilleol B synthases.
    Ito R; Mori K; Hashimoto I; Nakano C; Sato T; Hoshino T
    Org Lett; 2011 May; 13(10):2678-81. PubMed ID: 21526825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alkylating enzymes.
    Wessjohann LA; Keim J; Weigel B; Dippe M
    Curr Opin Chem Biol; 2013 Apr; 17(2):229-35. PubMed ID: 23518239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic cyclization of dioxidosqualene to heterocyclic triterpenes.
    Shan H; Segura MJ; Wilson WK; Lodeiro S; Matsuda SP
    J Am Chem Soc; 2005 Dec; 127(51):18008-9. PubMed ID: 16366544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of 1,2-hydride shifts in the formation of euph-7-ene by the squalene-tetrahymanol cyclase of Tetrahymena pyriformis.
    Giner JL; Rocchetti S; Neunlist S; Rohmer M; Arigoni D
    Chem Commun (Camb); 2005 Jun; (24):3089-91. PubMed ID: 15959594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutational analysis of white spruce (Picea glauca) ent-kaurene synthase (PgKS) reveals common and distinct mechanisms of conifer diterpene synthases of general and specialized metabolism.
    Zerbe P; Chiang A; Bohlmann J
    Phytochemistry; 2012 Feb; 74():30-9. PubMed ID: 22177479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemo-enzymatic syntheses of drimane-type sesquiterpenes and the fundamental core of hongoquercin meroterpenoid by recombinant squalene-hopene cyclase.
    Yonemura Y; Ohyama T; Hoshino T
    Org Biomol Chem; 2012 Jan; 10(2):440-6. PubMed ID: 22068606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.