These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 26731220)
1. Efficient Subcellular Targeting to the Cell Nucleus of Quantum Dots Densely Decorated with a Nuclear Localization Sequence Peptide. Maity AR; Stepensky D ACS Appl Mater Interfaces; 2016 Jan; 8(3):2001-9. PubMed ID: 26731220 [TBL] [Abstract][Full Text] [Related]
2. Nuclear and perinuclear targeting efficiency of quantum dots depends on density of peptidic targeting residues on their surface. Maity AR; Stepensky D J Control Release; 2017 Jul; 257():32-39. PubMed ID: 28042083 [TBL] [Abstract][Full Text] [Related]
3. Efficient decoration of nanoparticles intended for intracellular drug targeting with targeting residues, as revealed by a new indirect analytical approach. Kaplun V; Stepensky D Mol Pharm; 2014 Aug; 11(8):2906-14. PubMed ID: 25040658 [TBL] [Abstract][Full Text] [Related]
4. Targeted nuclear delivery using peptide-coated quantum dots. Kuo CW; Chueh DY; Singh N; Chien FC; Chen P Bioconjug Chem; 2011 Jun; 22(6):1073-80. PubMed ID: 21528926 [TBL] [Abstract][Full Text] [Related]
5. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies. Maity AR; Stepensky D Int J Pharm; 2015 Dec; 496(2):268-74. PubMed ID: 26516100 [TBL] [Abstract][Full Text] [Related]
6. Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots. Narayanan K; Yen SK; Dou Q; Padmanabhan P; Sudhaharan T; Ahmed S; Ying JY; Selvan ST Sci Rep; 2013; 3():2184. PubMed ID: 23851637 [TBL] [Abstract][Full Text] [Related]
7. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density. Tammam SN; Azzazy HM; Breitinger HG; Lamprecht A Mol Pharm; 2015 Dec; 12(12):4277-89. PubMed ID: 26465978 [TBL] [Abstract][Full Text] [Related]
8. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems. Maity AR; Stepensky D Mol Pharm; 2016 Jan; 13(1):1-7. PubMed ID: 26587994 [TBL] [Abstract][Full Text] [Related]
9. Cell uptake and intracellular visualization using quantum dots or nuclear localization signal-modified quantum dots with gold nanoparticles as quenchers. Kuo KW; Chen TH; Kuo WT; Huang HY; Lo HY; Huang YY J Nanosci Nanotechnol; 2010 Jul; 10(7):4173-7. PubMed ID: 21128397 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a multifunctional PEG-based gene delivery system containing nuclear localization signals and endosomal escape peptides. Moore NM; Sheppard CL; Sakiyama-Elbert SE Acta Biomater; 2009 Mar; 5(3):854-64. PubMed ID: 18926782 [TBL] [Abstract][Full Text] [Related]
11. 'IntraCell' plugin for assessment of intracellular localization of nano-delivery systems and their targeting to the individual organelles. Sneh-Edri H; Stepensky D Biochem Biophys Res Commun; 2011 Feb; 405(2):228-33. PubMed ID: 21219848 [TBL] [Abstract][Full Text] [Related]
12. Quantum dots targeted to the assigned organelle in living cells. Hoshino A; Fujioka K; Oku T; Nakamura S; Suga M; Yamaguchi Y; Suzuki K; Yasuhara M; Yamamoto K Microbiol Immunol; 2004; 48(12):985-94. PubMed ID: 15611617 [TBL] [Abstract][Full Text] [Related]
14. Conjugation of transferrin to azide-modified CdSe/ZnS core-shell quantum dots using cyclooctyne click chemistry. Schieber C; Bestetti A; Lim JP; Ryan AD; Nguyen TL; Eldridge R; White AR; Gleeson PA; Donnelly PS; Williams SJ; Mulvaney P Angew Chem Int Ed Engl; 2012 Oct; 51(42):10523-7. PubMed ID: 22996637 [TBL] [Abstract][Full Text] [Related]
15. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models. Liu J; Hu R; Liu J; Zhang B; Wang Y; Liu X; Law WC; Liu L; Ye L; Yong KT Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():222-31. PubMed ID: 26354258 [TBL] [Abstract][Full Text] [Related]
16. Tracking the down-regulation of folate receptor-α in cancer cells through target specific delivery of quantum dots coupled with antisense oligonucleotide and targeted peptide. Zhang MZ; Yu Y; Yu RN; Wan M; Zhang RY; Zhao YD Small; 2013 Dec; 9(24):4183-93. PubMed ID: 23828664 [TBL] [Abstract][Full Text] [Related]
17. Nuclear trafficking of the POZ-ZF protein Znf131. Donaldson NS; Daniel Y; Kelly KF; Graham M; Daniel JM Biochim Biophys Acta; 2007 Apr; 1773(4):546-55. PubMed ID: 17306895 [TBL] [Abstract][Full Text] [Related]
18. Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system. Delehanty JB; Bradburne CE; Boeneman K; Susumu K; Farrell D; Mei BC; Blanco-Canosa JB; Dawson G; Dawson PE; Mattoussi H; Medintz IL Integr Biol (Camb); 2010 Jun; 2(5-6):265-77. PubMed ID: 20535418 [TBL] [Abstract][Full Text] [Related]
19. Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain. Agarwal R; Domowicz MS; Schwartz NB; Henry J; Medintz I; Delehanty JB; Stewart MH; Susumu K; Huston AL; Deschamps JR; Dawson PE; Palomo V; Dawson G ACS Chem Neurosci; 2015 Mar; 6(3):494-504. PubMed ID: 25688887 [TBL] [Abstract][Full Text] [Related]
20. Optimization of nuclear localization signal for nuclear transport of DNA-encapsulating particles. Eguchi A; Furusawa H; Yamamoto A; Akuta T; Hasegawa M; Okahata Y; Nakanishi M J Control Release; 2005 Jun; 104(3):507-19. PubMed ID: 15911050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]