BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 26731220)

  • 1. Efficient Subcellular Targeting to the Cell Nucleus of Quantum Dots Densely Decorated with a Nuclear Localization Sequence Peptide.
    Maity AR; Stepensky D
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2001-9. PubMed ID: 26731220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear and perinuclear targeting efficiency of quantum dots depends on density of peptidic targeting residues on their surface.
    Maity AR; Stepensky D
    J Control Release; 2017 Jul; 257():32-39. PubMed ID: 28042083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient decoration of nanoparticles intended for intracellular drug targeting with targeting residues, as revealed by a new indirect analytical approach.
    Kaplun V; Stepensky D
    Mol Pharm; 2014 Aug; 11(8):2906-14. PubMed ID: 25040658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted nuclear delivery using peptide-coated quantum dots.
    Kuo CW; Chueh DY; Singh N; Chien FC; Chen P
    Bioconjug Chem; 2011 Jun; 22(6):1073-80. PubMed ID: 21528926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies.
    Maity AR; Stepensky D
    Int J Pharm; 2015 Dec; 496(2):268-74. PubMed ID: 26516100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots.
    Narayanan K; Yen SK; Dou Q; Padmanabhan P; Sudhaharan T; Ahmed S; Ying JY; Selvan ST
    Sci Rep; 2013; 3():2184. PubMed ID: 23851637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.
    Tammam SN; Azzazy HM; Breitinger HG; Lamprecht A
    Mol Pharm; 2015 Dec; 12(12):4277-89. PubMed ID: 26465978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.
    Maity AR; Stepensky D
    Mol Pharm; 2016 Jan; 13(1):1-7. PubMed ID: 26587994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell uptake and intracellular visualization using quantum dots or nuclear localization signal-modified quantum dots with gold nanoparticles as quenchers.
    Kuo KW; Chen TH; Kuo WT; Huang HY; Lo HY; Huang YY
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4173-7. PubMed ID: 21128397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a multifunctional PEG-based gene delivery system containing nuclear localization signals and endosomal escape peptides.
    Moore NM; Sheppard CL; Sakiyama-Elbert SE
    Acta Biomater; 2009 Mar; 5(3):854-64. PubMed ID: 18926782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'IntraCell' plugin for assessment of intracellular localization of nano-delivery systems and their targeting to the individual organelles.
    Sneh-Edri H; Stepensky D
    Biochem Biophys Res Commun; 2011 Feb; 405(2):228-33. PubMed ID: 21219848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dots targeted to the assigned organelle in living cells.
    Hoshino A; Fujioka K; Oku T; Nakamura S; Suga M; Yamaguchi Y; Suzuki K; Yasuhara M; Yamamoto K
    Microbiol Immunol; 2004; 48(12):985-94. PubMed ID: 15611617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted anticancer drug delivery through anthracycline antibiotic bearing functionalized quantum dots.
    Bajwa N; Kumar Mehra N; Jain K; Kumar Jain N
    Artif Cells Nanomed Biotechnol; 2016 Nov; 44(7):1774-82. PubMed ID: 26508412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conjugation of transferrin to azide-modified CdSe/ZnS core-shell quantum dots using cyclooctyne click chemistry.
    Schieber C; Bestetti A; Lim JP; Ryan AD; Nguyen TL; Eldridge R; White AR; Gleeson PA; Donnelly PS; Williams SJ; Mulvaney P
    Angew Chem Int Ed Engl; 2012 Oct; 51(42):10523-7. PubMed ID: 22996637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models.
    Liu J; Hu R; Liu J; Zhang B; Wang Y; Liu X; Law WC; Liu L; Ye L; Yong KT
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():222-31. PubMed ID: 26354258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking the down-regulation of folate receptor-α in cancer cells through target specific delivery of quantum dots coupled with antisense oligonucleotide and targeted peptide.
    Zhang MZ; Yu Y; Yu RN; Wan M; Zhang RY; Zhao YD
    Small; 2013 Dec; 9(24):4183-93. PubMed ID: 23828664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear trafficking of the POZ-ZF protein Znf131.
    Donaldson NS; Daniel Y; Kelly KF; Graham M; Daniel JM
    Biochim Biophys Acta; 2007 Apr; 1773(4):546-55. PubMed ID: 17306895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system.
    Delehanty JB; Bradburne CE; Boeneman K; Susumu K; Farrell D; Mei BC; Blanco-Canosa JB; Dawson G; Dawson PE; Mattoussi H; Medintz IL
    Integr Biol (Camb); 2010 Jun; 2(5-6):265-77. PubMed ID: 20535418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain.
    Agarwal R; Domowicz MS; Schwartz NB; Henry J; Medintz I; Delehanty JB; Stewart MH; Susumu K; Huston AL; Deschamps JR; Dawson PE; Palomo V; Dawson G
    ACS Chem Neurosci; 2015 Mar; 6(3):494-504. PubMed ID: 25688887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of nuclear localization signal for nuclear transport of DNA-encapsulating particles.
    Eguchi A; Furusawa H; Yamamoto A; Akuta T; Hasegawa M; Okahata Y; Nakanishi M
    J Control Release; 2005 Jun; 104(3):507-19. PubMed ID: 15911050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.