These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 26732185)
1. In Situ XPS Chemical Analysis of MnSiO3 Copper Diffusion Barrier Layer Formation and Simultaneous Fabrication of Metal Oxide Semiconductor Electrical Test MOS Structures. Byrne C; Brennan B; McCoy AP; Bogan J; Brady A; Hughes G ACS Appl Mater Interfaces; 2016 Feb; 8(4):2470-7. PubMed ID: 26732185 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of an Amorphous Carbon Layer as a Diffusion Barrier for an Advanced Copper Interconnect. An BS; Kwon Y; Oh JS; Lee C; Choi S; Kim H; Lee M; Pae S; Yang CW ACS Appl Mater Interfaces; 2020 Jan; 12(2):3104-3113. PubMed ID: 31845581 [TBL] [Abstract][Full Text] [Related]
3. Amorphous Ta An BS; Kwon Y; Oh JS; Lee M; Pae S; Yang CW Sci Rep; 2019 Dec; 9(1):20132. PubMed ID: 31882921 [TBL] [Abstract][Full Text] [Related]
4. Surface passivation and interface properties of bulk GaAs and epitaxial-GaAs/Ge using atomic layer deposited TiAlO alloy dielectric. Dalapati GK; Chia CK; Tan CC; Tan HR; Chiam SY; Dong JR; Das A; Chattopadhyay S; Mahata C; Maiti CK; Chi DZ ACS Appl Mater Interfaces; 2013 Feb; 5(3):949-57. PubMed ID: 23331503 [TBL] [Abstract][Full Text] [Related]
5. Self-formed mn oxide barrier on SiOCH for nanoscale copper interconnect by metal organic chemical vapor deposition of Mn. Moon HK; Kim BY; Mi J; Lee HL; Lee NE J Nanosci Nanotechnol; 2013 Dec; 13(12):8041-9. PubMed ID: 24266188 [TBL] [Abstract][Full Text] [Related]
6. Effects of Titanium Layer Oxygen Scavenging on the High-k/InGaAs Interface. Winter R; Shekhter P; Tang K; Floreano L; Verdini A; McIntyre PC; Eizenberg M ACS Appl Mater Interfaces; 2016 Jul; 8(26):16979-84. PubMed ID: 27282201 [TBL] [Abstract][Full Text] [Related]
7. Silicon diffusion control in atomic-layer-deposited Al2O3/La2O3/Al2O3 gate stacks using an Al2O3 barrier layer. Wang X; Liu HX; Fei CX; Yin SY; Fan XJ Nanoscale Res Lett; 2015; 10():141. PubMed ID: 25897303 [TBL] [Abstract][Full Text] [Related]
8. Mass transport mechanism of cu species at the metal/dielectric interfaces with a graphene barrier. Zhao Y; Liu Z; Sun T; Zhang L; Jie W; Wang X; Xie Y; Tsang YH; Long H; Chai Y ACS Nano; 2014 Dec; 8(12):12601-11. PubMed ID: 25423484 [TBL] [Abstract][Full Text] [Related]
10. Modulating the interface quality and electrical properties of HfTiO/InGaAs gate stack by atomic-layer-deposition-derived Al₂O₃ passivation layer. He G; Gao J; Chen H; Cui J; Sun Z; Chen X ACS Appl Mater Interfaces; 2014 Dec; 6(24):22013-25. PubMed ID: 25471009 [TBL] [Abstract][Full Text] [Related]
11. Ultrahigh vacuum-compatible fabrication and electrical characterization systems for environmentally sensitive metal oxide semiconductor capacitors. Billman CA; Walker FJ Rev Sci Instrum; 2007 Jun; 78(6):065113. PubMed ID: 17614644 [TBL] [Abstract][Full Text] [Related]
12. Transfer-free multi-layer graphene as a diffusion barrier. Mehta R; Chugh S; Chen Z Nanoscale; 2017 Feb; 9(5):1827-1833. PubMed ID: 28116400 [TBL] [Abstract][Full Text] [Related]
13. Reliability and Stability Improvement of MOS Capacitors via Nitrogen-Hydrogen Mixed Plasma Pretreatment for SiC Surfaces. Wei S; Bai J; Xie W; Su Y; Qin F; Wang D ACS Appl Mater Interfaces; 2023 Apr; 15(14):18537-18549. PubMed ID: 36987379 [TBL] [Abstract][Full Text] [Related]
14. Selective Passivation of GeO2/Ge Interface Defects in Atomic Layer Deposited High-k MOS Structures. Zhang L; Li H; Guo Y; Tang K; Woicik J; Robertson J; McIntyre PC ACS Appl Mater Interfaces; 2015 Sep; 7(37):20499-506. PubMed ID: 26334784 [TBL] [Abstract][Full Text] [Related]
15. Improving the electrical properties of lanthanum silicate films on ge metal oxide semiconductor capacitors by adopting interfacial barrier and capping layers. Choi YJ; Lim H; Lee S; Suh S; Kim JR; Jung HS; Park S; Lee JH; Kim SG; Hwang CS; Kim H ACS Appl Mater Interfaces; 2014 May; 6(10):7885-94. PubMed ID: 24780393 [TBL] [Abstract][Full Text] [Related]
16. Controlling the defects and transition layer in SiO Kim DK; Jeong KS; Kang YS; Kang HK; Cho SW; Kim SO; Suh D; Kim S; Cho MH Sci Rep; 2016 Oct; 6():34945. PubMed ID: 27721493 [TBL] [Abstract][Full Text] [Related]
17. Interface properties of atomic layer deposited TiO2/Al2O3 films on In(0.53)Ga(0.47)As/InP substrates. Mukherjee C; Das T; Mahata C; Maiti CK; Chia CK; Chiam SY; Chi DZ; Dalapati GK ACS Appl Mater Interfaces; 2014 Mar; 6(5):3263-74. PubMed ID: 24472090 [TBL] [Abstract][Full Text] [Related]
18. Graphene as an atomically thin barrier to Cu diffusion into Si. Hong J; Lee S; Lee S; Han H; Mahata C; Yeon HW; Koo B; Kim SI; Nam T; Byun K; Min BW; Kim YW; Kim H; Joo YC; Lee T Nanoscale; 2014 Jul; 6(13):7503-11. PubMed ID: 24883431 [TBL] [Abstract][Full Text] [Related]
19. Influence of Ultra-Thin Ge₃N₄ Passivation Layer on Structural, Interfacial, and Electrical Properties of HfO₂/Ge Metal-Oxide-Semiconductor Devices. Mallem K; Jagadeesh Chandra SV; Ju M; Dutta S; Ramana CHVV; Hussain SQ; Park J; Kim Y; Cho YH; Cho EC; Yi J J Nanosci Nanotechnol; 2020 Feb; 20(2):1039-1045. PubMed ID: 31383103 [TBL] [Abstract][Full Text] [Related]
20. Thermal stability of Ti/Mo and Ti/MoN nanostructures for barrier applications in Cu interconnects. Majumder P; Takoudis C Nanotechnology; 2008 May; 19(20):205202. PubMed ID: 21825734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]