BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26732374)

  • 1. Dermal bioaccessibility of flame retardants from indoor dust and the influence of topically applied cosmetics.
    Pawar G; Abdallah MA; de Sáa EV; Harrad S
    J Expo Sci Environ Epidemiol; 2017 Jan; 27(1):100-105. PubMed ID: 26732374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vitro estimation of bioaccessibility of chlorinated organophosphate flame retardants in indoor dust by fasting and fed physiologically relevant extraction tests.
    Quintana JB; Rosende M; Montes R; Rodríguez-Álvarez T; Rodil R; Cela R; Miró M
    Sci Total Environ; 2017 Feb; 580():540-549. PubMed ID: 27993474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhalation bioaccessibility and health risk assessment of flame retardants in indoor dust from Vietnamese e-waste-dismantling workshops.
    Wannomai T; Matsukami H; Uchida N; Takahashi F; Tuyen LH; Viet PH; Takahashi S; Kunisue T; Suzuki G
    Sci Total Environ; 2021 Mar; 760():143862. PubMed ID: 33348160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure to brominated and organophosphate ester flame retardants in U.S. childcare environments: Effect of removal of flame-retarded nap mats on indoor levels.
    Stubbings WA; Schreder ED; Thomas MB; Romanak K; Venier M; Salamova A
    Environ Pollut; 2018 Jul; 238():1056-1068. PubMed ID: 29703676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dermal bioaccessibility of perfluoroalkyl substances from household dust; influence of topically applied cosmetics.
    Ragnarsdóttir O; Abdallah MA; Harrad S
    Environ Res; 2023 Dec; 238(Pt 1):117093. PubMed ID: 37683793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brominated and organophosphorus flame retardants in body wipes and house dust, and an estimation of house dust hand-loadings in Dutch toddlers.
    Sugeng EJ; Leonards PEG; van de Bor M
    Environ Res; 2017 Oct; 158():789-797. PubMed ID: 28756010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Legacy and emerging organophosphοrus flame retardants in car dust from Greece: Implications for human exposure.
    Christia C; Poma G; Besis A; Samara C; Covaci A
    Chemosphere; 2018 Apr; 196():231-239. PubMed ID: 29304461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of particle size on distribution and human exposure of flame retardants in indoor dust.
    He RW; Li YZ; Xiang P; Li C; Cui XY; Ma LQ
    Environ Res; 2018 Apr; 162():166-172. PubMed ID: 29316461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure.
    Abou-Elwafa Abdallah M; Pawar G; Harrad S
    Toxicol Appl Pharmacol; 2016 Jan; 291():28-37. PubMed ID: 26712466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence of alternative flame retardants in indoor dust from New Zealand: indoor sources and human exposure assessment.
    Ali N; Dirtu AC; Van den Eede N; Goosey E; Harrad S; Neels H; 't Mannetje A; Coakley J; Douwes J; Covaci A
    Chemosphere; 2012 Sep; 88(11):1276-82. PubMed ID: 22551874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dermal uptake of chlorinated organophosphate flame retardants via contact with furniture fabrics; implications for human exposure.
    Abou-Elwafa Abdallah M; Harrad S
    Environ Res; 2022 Jun; 209():112847. PubMed ID: 35104485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and intake assessment of organophosphate flame retardants in house dust in Japanese dwellings.
    Tajima S; Araki A; Kawai T; Tsuboi T; Ait Bamai Y; Yoshioka E; Kanazawa A; Cong S; Kishi R
    Sci Total Environ; 2014 Apr; 478():190-9. PubMed ID: 24531310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro assessment of the bioaccessibility of brominated flame retardants in indoor dust using a colon extended model of the human gastrointestinal tract.
    Abdallah MA; Tilston E; Harrad S; Collins C
    J Environ Monit; 2012 Dec; 14(12):3276-83. PubMed ID: 23160170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants.
    Abdallah MA; Pawar G; Harrad S
    Environ Int; 2015 Nov; 84():64-70. PubMed ID: 26232142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indoor organophosphate and polybrominated flame retardants in Tokyo.
    Saito I; Onuki A; Seto H
    Indoor Air; 2007 Feb; 17(1):28-36. PubMed ID: 17257150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of brominated flame retardants in house dust.
    Abb M; Stahl B; Lorenz W
    Chemosphere; 2011 Dec; 85(11):1657-63. PubMed ID: 21724229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence of tetrabromobisphenol a (TBBPA) and hexabromocyclododecane (HBCD) in soil and road dust in Chongqing, western China, with emphasis on diastereoisomer profiles, particle size distribution, and human exposure.
    Lu JF; He MJ; Yang ZH; Wei SQ
    Environ Pollut; 2018 Nov; 242(Pt A):219-228. PubMed ID: 29980040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Novel" brominated flame retardants in Belgian and UK indoor dust: implications for human exposure.
    Ali N; Harrad S; Goosey E; Neels H; Covaci A
    Chemosphere; 2011 May; 83(10):1360-5. PubMed ID: 21458020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure to organophosphate and polybrominated diphenyl ether flame retardants via indoor dust and childhood asthma.
    Canbaz D; van Velzen MJ; Hallner E; Zwinderman AH; Wickman M; Leonards PE; van Ree R; van Rijt LS
    Indoor Air; 2016 Jun; 26(3):403-13. PubMed ID: 25952720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human exposure to HBCD and TBBPA via indoor dust in Korea: Estimation of external exposure and body burden.
    Barghi M; Shin ES; Kim JC; Choi SD; Chang YS
    Sci Total Environ; 2017 Sep; 593-594():779-786. PubMed ID: 28364612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.