These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 26732404)

  • 1. Representational similarity encoding for fMRI: Pattern-based synthesis to predict brain activity using stimulus-model-similarities.
    Anderson AJ; Zinszer BD; Raizada RDS
    Neuroimage; 2016 Mar; 128():44-53. PubMed ID: 26732404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias.
    Cai MB; Schuck NW; Pillow JW; Niv Y
    PLoS Comput Biol; 2019 May; 15(5):e1006299. PubMed ID: 31125335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding neural representational spaces using multivariate pattern analysis.
    Haxby JV; Connolly AC; Guntupalli JS
    Annu Rev Neurosci; 2014; 37():435-56. PubMed ID: 25002277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reading visually embodied meaning from the brain: Visually grounded computational models decode visual-object mental imagery induced by written text.
    Anderson AJ; Bruni E; Lopopolo A; Poesio M; Baroni M
    Neuroimage; 2015 Oct; 120():309-22. PubMed ID: 26188260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern component modeling: A flexible approach for understanding the representational structure of brain activity patterns.
    Diedrichsen J; Yokoi A; Arbuckle SA
    Neuroimage; 2018 Oct; 180(Pt A):119-133. PubMed ID: 28843540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular encoding and decoding models derived from bayesian canonical correlation analysis.
    Fujiwara Y; Miyawaki Y; Kamitani Y
    Neural Comput; 2013 Apr; 25(4):979-1005. PubMed ID: 23339608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature-reweighted representational similarity analysis: A method for improving the fit between computational models, brains, and behavior.
    Kaniuth P; Hebart MN
    Neuroimage; 2022 Aug; 257():119294. PubMed ID: 35580810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of representational geometry across a wide range of fMRI activity levels.
    Arbuckle SA; Yokoi A; Pruszynski JA; Diedrichsen J
    Neuroimage; 2019 Feb; 186():155-163. PubMed ID: 30395930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrieving and reconstructing conceptually similar images from fMRI with latent diffusion models and a neuro-inspired brain decoding model.
    Ferrante M; Boccato T; Passamonti L; Toschi N
    J Neural Eng; 2024 Jun; 21(4):. PubMed ID: 38885689
    [No Abstract]   [Full Text] [Related]  

  • 10. Encoding and decoding in fMRI.
    Naselaris T; Kay KN; Nishimoto S; Gallant JL
    Neuroimage; 2011 May; 56(2):400-10. PubMed ID: 20691790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-subject neural code converter for visual image representation.
    Yamada K; Miyawaki Y; Kamitani Y
    Neuroimage; 2015 Jun; 113():289-97. PubMed ID: 25842289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variational representational similarity analysis.
    Friston KJ; Diedrichsen J; Holmes E; Zeidman P
    Neuroimage; 2019 Nov; 201():115986. PubMed ID: 31255808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural pattern similarity underlies the mnemonic advantages for living words.
    Xiao X; Dong Q; Chen C; Xue G
    Cortex; 2016 Jun; 79():99-111. PubMed ID: 27093349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models.
    Khaligh-Razavi SM; Henriksson L; Kay K; Kriegeskorte N
    J Math Psychol; 2017 Feb; 76(Pt B):184-197. PubMed ID: 28298702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural pattern similarity across concept exemplars predicts memory after a long delay.
    Bruett H; Calloway RC; Tokowicz N; Coutanche MN
    Neuroimage; 2020 Oct; 219():117030. PubMed ID: 32526388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying learning-dependent changes in the brain: Single-trial multivoxel pattern analysis requires slow event-related fMRI.
    Visser RM; de Haan MI; Beemsterboer T; Haver P; Kindt M; Scholte HS
    Psychophysiology; 2016 Aug; 53(8):1117-27. PubMed ID: 27153295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural Evidence for Representational Persistence Within Events.
    Ezzyat Y; Davachi L
    J Neurosci; 2021 Sep; 41(37):7909-7920. PubMed ID: 34330773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lesser Neural Pattern Similarity across Repeated Tests Is Associated with Better Long-Term Memory Retention.
    Karlsson Wirebring L; Wiklund-Hörnqvist C; Eriksson J; Andersson M; Jonsson B; Nyberg L
    J Neurosci; 2015 Jul; 35(26):9595-602. PubMed ID: 26134642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practices and pitfalls in inferring neural representations.
    Popov V; Ostarek M; Tenison C
    Neuroimage; 2018 Jul; 174():340-351. PubMed ID: 29578030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards semantic fMRI neurofeedback: navigating among mental states using real-time representational similarity analysis.
    Russo AG; Lührs M; Di Salle F; Esposito F; Goebel R
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33684900
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.