These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26732456)

  • 1. Kinetics of particle coarsening with allowance for Ostwald ripening and coagulation.
    Alexandrov DV
    J Phys Condens Matter; 2016 Jan; 28(3):035102. PubMed ID: 26732456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From nucleation and coarsening to coalescence in metastable liquids.
    Alexandrov DV; Alexandrova IV
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190247. PubMed ID: 32279640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of non-stationarity and interphase curvature on the growth dynamics of spherical crystals in a metastable liquid.
    Makoveeva EV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200307. PubMed ID: 34275364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nonlinear growth rates of spherical crystals and their withdrawal rate from a crystallizer on the particle-size distribution function.
    Makoveeva EV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180210. PubMed ID: 30827205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical solutions of mushy layer equations describing directional solidification in the presence of nucleation.
    Alexandrov DV; Ivanov AA; Alexandrova IV
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A complete analytical solution of the Fokker-Planck and balance equations for nucleation and growth of crystals.
    Makoveeva EV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase transformations in metastable liquids combined with polymerization.
    Ivanov AA; Alexandrova IV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180215. PubMed ID: 30827217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution kinetics of Ostwald ripening at large volume fraction and with coalescence.
    Madras G; McCoy BJ
    J Colloid Interface Sci; 2003 May; 261(2):423-33. PubMed ID: 16256552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Ostwald ripening by using surfactants with high surface modulus.
    Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of matrix molecular weight on the coarsening mechanism of polymer-grafted gold nanocrystals.
    Jia X; Listak J; Witherspoon V; Kalu EE; Yang X; Bockstaller MR
    Langmuir; 2010 Jul; 26(14):12190-7. PubMed ID: 20575544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Temperature Cycling on Ostwald Ripening.
    van Westen T; Groot RD
    Cryst Growth Des; 2018 Sep; 18(9):4952-4962. PubMed ID: 30210267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the theory of crystal growth in metastable systems with biomedical applications: protein and insulin crystallization.
    Alexandrov DV; Nizovtseva IG
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180214. PubMed ID: 30827215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of particulate assemblages in metastable liquids: a test of theory with nucleation and growth kinetics.
    Alexandrova IV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190245. PubMed ID: 32279636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleation and growth dynamics of ellipsoidal crystals in metastable liquids.
    Nikishina MA; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200306. PubMed ID: 34275366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ostwald ripening in the presence of simultaneous occurrence of various mass transfer mechanisms: an extension of the Lifshitz-Slyozov theory.
    Alexandrova IV; Alexandrov DV; Makoveeva EV
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200308. PubMed ID: 34275363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elemental sulfur coarsening kinetics.
    Garcia AA; Druschel GK
    Geochem Trans; 2014; 15():11. PubMed ID: 26561455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase ordering with a global conservation law: Ostwald ripening and coalescence.
    Conti M; Meerson B; Peleg A; Sasorov PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046117. PubMed ID: 12005936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ostwald ripening in nanoalloys: when thermodynamics drives a size-dependent particle composition.
    Alloyeau D; Prévot G; Le Bouar Y; Oikawa T; Langlois C; Loiseau A; Ricolleau C
    Phys Rev Lett; 2010 Dec; 105(25):255901. PubMed ID: 21231603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal coarsening of supported palladium combustion catalysts.
    McCarty JG; Malukhin G; Poojary DM; Datye AK; Xu Q
    J Phys Chem B; 2005 Feb; 109(6):2387-91. PubMed ID: 16851233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.