These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 26732493)
1. NON-YELLOWING2 (NYE2), a Close Paralog of NYE1, Plays a Positive Role in Chlorophyll Degradation in Arabidopsis. Wu S; Li Z; Yang L; Xie Z; Chen J; Zhang W; Liu T; Gao S; Gao J; Zhu Y; Xin J; Ren G; Kuai B Mol Plant; 2016 Apr; 9(4):624-7. PubMed ID: 26732493 [No Abstract] [Full Text] [Related]
2. Staying green postharvest: how three mutations in the Arabidopsis chlorophyll b reductase gene NYC1 delay degreening by distinct mechanisms. Jibran R; Sullivan KL; Crowhurst R; Erridge ZA; Chagné D; McLachlan AR; Brummell DA; Dijkwel PP; Hunter DA J Exp Bot; 2015 Nov; 66(21):6849-62. PubMed ID: 26261268 [TBL] [Abstract][Full Text] [Related]
3. Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes. Zhu X; Chen J; Xie Z; Gao J; Ren G; Gao S; Zhou X; Kuai B Plant J; 2015 Nov; 84(3):597-610. PubMed ID: 26407000 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of the NON-YELLOW COLORING 1 protein of the chlorophyll cycle requires chlorophyll b in Arabidopsis thaliana. Jia T; Ito H; Hu X; Tanaka A Plant J; 2015 Feb; 81(4):586-96. PubMed ID: 25557327 [TBL] [Abstract][Full Text] [Related]
5. NYEs/SGRs-mediated chlorophyll degradation is critical for detoxification during seed maturation in Arabidopsis. Li Z; Wu S; Chen J; Wang X; Gao J; Ren G; Kuai B Plant J; 2017 Nov; 92(4):650-661. PubMed ID: 28873256 [TBL] [Abstract][Full Text] [Related]
6. Crystal Structure and Catalytic Mechanism of 7-Hydroxymethyl Chlorophyll a Reductase. Wang X; Liu L J Biol Chem; 2016 Jun; 291(25):13349-59. PubMed ID: 27072131 [TBL] [Abstract][Full Text] [Related]
7. The C-terminal cysteine-rich motif of NYE1/SGR1 is indispensable for its function in chlorophyll degradation in Arabidopsis. Xie Z; Wu S; Chen J; Zhu X; Zhou X; Hörtensteiner S; Ren G; Kuai B Plant Mol Biol; 2019 Oct; 101(3):257-268. PubMed ID: 31302867 [TBL] [Abstract][Full Text] [Related]
9. Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. Ren G; Zhou Q; Wu S; Zhang Y; Zhang L; Huang J; Sun Z; Kuai B J Integr Plant Biol; 2010 May; 52(5):496-504. PubMed ID: 20537045 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of the substrate-bound forms of red chlorophyll catabolite reductase: implications for site-specific and stereospecific reaction. Sugishima M; Okamoto Y; Noguchi M; Kohchi T; Tamiaki H; Fukuyama K J Mol Biol; 2010 Oct; 402(5):879-91. PubMed ID: 20727901 [TBL] [Abstract][Full Text] [Related]
11. The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. Schenk N; Schelbert S; Kanwischer M; Goldschmidt EE; Dörmann P; Hörtensteiner S FEBS Lett; 2007 Nov; 581(28):5517-25. PubMed ID: 17996203 [TBL] [Abstract][Full Text] [Related]
12. Influence of chloroplastic photo-oxidative stress on mitochondrial alternative oxidase capacity and respiratory properties: a case study with Arabidopsis yellow variegated 2. Yoshida K; Watanabe C; Kato Y; Sakamoto W; Noguchi K Plant Cell Physiol; 2008 Apr; 49(4):592-603. PubMed ID: 18296449 [TBL] [Abstract][Full Text] [Related]
13. PPR motifs of the nucleus-encoded factor, PGR3, function in the selective and distinct steps of chloroplast gene expression in Arabidopsis. Yamazaki H; Tasaka M; Shikanai T Plant J; 2004 Apr; 38(1):152-63. PubMed ID: 15053768 [TBL] [Abstract][Full Text] [Related]
14. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll - protein complexes during leaf senescence. Yamatani H; Sato Y; Masuda Y; Kato Y; Morita R; Fukunaga K; Nagamura Y; Nishimura M; Sakamoto W; Tanaka A; Kusaba M Plant J; 2013 May; 74(4):652-62. PubMed ID: 23432654 [TBL] [Abstract][Full Text] [Related]
15. NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thaliana cells. Marchal C; Delorme-Hinoux V; Bariat L; Siala W; Belin C; Saez-Vasquez J; Riondet C; Reichheld JP Mol Plant; 2014 Jan; 7(1):30-44. PubMed ID: 24253198 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. Nakanishi H; Nozue H; Suzuki K; Kaneko Y; Taguchi G; Hayashida N Plant Cell Physiol; 2005 Mar; 46(3):467-73. PubMed ID: 15695432 [TBL] [Abstract][Full Text] [Related]
17. A novel gene family in Arabidopsis encoding putative heptahelical transmembrane proteins homologous to human adiponectin receptors and progestin receptors. Hsieh MH; Goodman HM J Exp Bot; 2005 Dec; 56(422):3137-47. PubMed ID: 16263907 [TBL] [Abstract][Full Text] [Related]
18. Phylogeny-directed structural analysis of the Arabidopsis PsbS protein. Schultes NP; Peterson RB Biochem Biophys Res Commun; 2007 Apr; 355(2):464-70. PubMed ID: 17306227 [TBL] [Abstract][Full Text] [Related]
19. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. DalCorso G; Pesaresi P; Masiero S; Aseeva E; Schünemann D; Finazzi G; Joliot P; Barbato R; Leister D Cell; 2008 Jan; 132(2):273-85. PubMed ID: 18243102 [TBL] [Abstract][Full Text] [Related]
20. 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence. Sakuraba Y; Kim YS; Yoo SC; Hörtensteiner S; Paek NC Biochem Biophys Res Commun; 2013 Jan; 430(1):32-7. PubMed ID: 23200839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]