These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 26732494)
41. The Arabidopsis eIF4E1 regulates NRT1.1-mediated nitrate signaling at both translational and transcriptional levels. Li N; Duan Y; Ye Q; Ma Y; Ma R; Zhao L; Zhu S; Yu F; Qi S; Wang Y New Phytol; 2023 Oct; 240(1):338-353. PubMed ID: 37424317 [TBL] [Abstract][Full Text] [Related]
42. Nitrate transporter NRT1.1 and anion channel SLAH3 form a functional unit to regulate nitrate-dependent alleviation of ammonium toxicity. Xiao C; Sun D; Liu B; Fang X; Li P; Jiang Y; He M; Li J; Luan S; He K J Integr Plant Biol; 2022 Apr; 64(4):942-957. PubMed ID: 35229477 [TBL] [Abstract][Full Text] [Related]
43. STOP1 activates NRT1.1-mediated nitrate uptake to create a favorable rhizospheric pH for plant adaptation to acidity. Ye JY; Tian WH; Zhou M; Zhu QY; Du WX; Zhu YX; Liu XX; Lin XY; Zheng SJ; Jin CW Plant Cell; 2021 Dec; 33(12):3658-3674. PubMed ID: 34524462 [TBL] [Abstract][Full Text] [Related]
44. Nitrate transport in plants: which gene and which control? Orsel M; Filleur S; Fraisier V; Daniel-Vedele F J Exp Bot; 2002 Apr; 53(370):825-33. PubMed ID: 11912225 [TBL] [Abstract][Full Text] [Related]
45. Evidence for a nitrate-independent function of the nitrate sensor NRT1.1 in Arabidopsis thaliana. Hachiya T; Mizokami Y; Miyata K; Tholen D; Watanabe CK; Noguchi K J Plant Res; 2011 May; 124(3):425-30. PubMed ID: 21052766 [TBL] [Abstract][Full Text] [Related]
46. Potential transceptor AtNRT1.13 modulates shoot architecture and flowering time in a nitrate-dependent manner. Chen HY; Lin SH; Cheng LH; Wu JJ; Lin YC; Tsay YF Plant Cell; 2021 Jul; 33(5):1492-1505. PubMed ID: 33580260 [TBL] [Abstract][Full Text] [Related]
47. Nitrate deficiency induces differential endocytosis in roots through NRT1.1. Chai S; Nie Y; Li S Plant Signal Behav; 2020 Oct; 15(10):1794394. PubMed ID: 32686596 [TBL] [Abstract][Full Text] [Related]
48. Inhibition of shoot-expressed NRT1.1 improves reutilization of apoplastic iron under iron-deficient conditions. Ye JY; Zhou M; Zhu QY; Zhu YX; Du WX; Liu XX; Jin CW Plant J; 2022 Oct; 112(2):549-564. PubMed ID: 36062335 [TBL] [Abstract][Full Text] [Related]
49. Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor. Bouguyon E; Perrine-Walker F; Pervent M; Rochette J; Cuesta C; Benkova E; Martinière A; Bach L; Krouk G; Gojon A; Nacry P Plant Physiol; 2016 Oct; 172(2):1237-1248. PubMed ID: 27543115 [TBL] [Abstract][Full Text] [Related]
50. Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis. Fang XZ; Tian WH; Liu XX; Lin XY; Jin CW; Zheng SJ New Phytol; 2016 Jul; 211(1):149-58. PubMed ID: 26864608 [TBL] [Abstract][Full Text] [Related]
51. The primary nitrate response: a multifaceted signalling pathway. Medici A; Krouk G J Exp Bot; 2014 Oct; 65(19):5567-76. PubMed ID: 24942915 [TBL] [Abstract][Full Text] [Related]
52. The Transcription Factor NIGT1.2 Modulates Both Phosphate Uptake and Nitrate Influx during Phosphate Starvation in Arabidopsis and Maize. Wang X; Wang HF; Chen Y; Sun MM; Wang Y; Chen YF Plant Cell; 2020 Nov; 32(11):3519-3534. PubMed ID: 32958562 [TBL] [Abstract][Full Text] [Related]
53. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Remans T; Nacry P; Pervent M; Filleur S; Diatloff E; Mounier E; Tillard P; Forde BG; Gojon A Proc Natl Acad Sci U S A; 2006 Dec; 103(50):19206-11. PubMed ID: 17148611 [TBL] [Abstract][Full Text] [Related]
54. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Almagro A; Lin SH; Tsay YF Plant Cell; 2008 Dec; 20(12):3289-99. PubMed ID: 19050168 [TBL] [Abstract][Full Text] [Related]
55. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Lezhneva L; Kiba T; Feria-Bourrellier AB; Lafouge F; Boutet-Mercey S; Zoufan P; Sakakibara H; Daniel-Vedele F; Krapp A Plant J; 2014 Oct; 80(2):230-41. PubMed ID: 25065551 [TBL] [Abstract][Full Text] [Related]
56. Genotypic differences in nitrate uptake, translocation and assimilation of two Chinese cabbage cultivars [Brassica campestris L. ssp. Chinensis (L.)]. Tang Y; Sun X; Hu C; Tan Q; Zhao X Plant Physiol Biochem; 2013 Sep; 70():14-20. PubMed ID: 23770590 [TBL] [Abstract][Full Text] [Related]
57. Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Lee IC; Hong SW; Whang SS; Lim PO; Nam HG; Koo JC Plant Cell Physiol; 2011 Apr; 52(4):651-62. PubMed ID: 21382977 [TBL] [Abstract][Full Text] [Related]
58. Characterization of the signalling pathways involved in the repression of root nitrate uptake by nitrate in Arabidopsis thaliana. Chaput V; Li J; Séré D; Tillard P; Fizames C; Moyano T; Zuo K; Martin A; Gutiérrez RA; Gojon A; Lejay L J Exp Bot; 2023 Aug; 74(14):4244-4258. PubMed ID: 37185665 [TBL] [Abstract][Full Text] [Related]
59. Regulation of the high-affinity NO3- uptake system by NRT1.1-mediated NO3- demand signaling in Arabidopsis. Krouk G; Tillard P; Gojon A Plant Physiol; 2006 Nov; 142(3):1075-86. PubMed ID: 16998085 [TBL] [Abstract][Full Text] [Related]
60. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. Yu J; Zhang Y; Di C; Zhang Q; Zhang K; Wang C; You Q; Yan H; Dai SY; Yuan JS; Xu W; Su Z J Exp Bot; 2016 Feb; 67(3):751-62. PubMed ID: 26547795 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]