BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26732518)

  • 1. Gelatine modified monetite as a bone substitute material: An in vitro assessment of bone biocompatibility.
    Kruppke B; Farack J; Wagner AS; Beckmann S; Heinemann C; Glenske K; Rößler S; Wiesmann HP; Wenisch S; Hanke T
    Acta Biomater; 2016 Mar; 32():275-285. PubMed ID: 26732518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomaterial based treatment of osteoclastic/osteoblastic cell imbalance - Gelatin-modified calcium/strontium phosphates.
    Kruppke B; Wagner AS; Rohnke M; Heinemann C; Kreschel C; Gebert A; Wiesmann HP; Mazurek S; Wenisch S; Hanke T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109933. PubMed ID: 31499966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resorption of monetite calcium phosphate cement by mouse bone marrow derived osteoclasts.
    Montazerolghaem M; Karlsson Ott M; Engqvist H; Melhus H; Rasmusson AJ
    Mater Sci Eng C Mater Biol Appl; 2015; 52():212-8. PubMed ID: 25953560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strontium substitution of gelatin modified calcium hydrogen phosphates as porous hard tissue substitutes.
    Kruppke B; Heinemann C; Gebert A; Rohnke M; Weiß M; Henß A; Wiesmann HP; Hanke T
    J Biomed Mater Res A; 2021 May; 109(5):722-732. PubMed ID: 32654374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro effects of particulate bone substitute materials on the resorption activity of human osteoclasts.
    Russmueller G; Winkler L; Lieber R; Seemann R; Pirklbauer K; Perisanidis C; Kapeller B; Spassova E; Halwax E; Poeschl WP; Macfelda K; Moser D
    Eur Cell Mater; 2017 Oct; 34():291-306. PubMed ID: 29064533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method.
    Cama G; Gharibi B; Knowles JC; Romeed S; DiSilvio L; Deb S
    J R Soc Interface; 2014 Dec; 11(101):20140727. PubMed ID: 25297314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The resorption of nanocrystalline calcium phosphates by osteoclast-like cells.
    Detsch R; Hagmeyer D; Neumann M; Schaefer S; Vortkamp A; Wuelling M; Ziegler G; Epple M
    Acta Biomater; 2010 Aug; 6(8):3223-33. PubMed ID: 20206720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential response of human blood leukocytes to brushite, monetite, and calcium polyphosphate biomaterials.
    Fine N; Sheikh Z; Al-Jaf F; Oveisi M; Borenstein A; Hu Y; Pilliar R; Grynpas M; Glogauer M
    J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):253-262. PubMed ID: 31009177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelatin-Modified Calcium/Strontium Hydrogen Phosphates Stimulate Bone Regeneration in Osteoblast/Osteoclast Co-Culture and in Osteoporotic Rat Femur Defects-In Vitro to In Vivo Translation.
    Kruppke B; Ray S; Alt V; Rohnke M; Kern C; Kampschulte M; Heinemann C; Budak M; Adam J; Döhner N; Franz-Forsthoffer L; El Khassawna T; Heiss C; Hanke T; Thormann U
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33153127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local delivery of iron chelators reduces in vivo remodeling of a calcium phosphate bone graft substitute.
    Drager J; Sheikh Z; Zhang YL; Harvey EJ; Barralet JE
    Acta Biomater; 2016 Sep; 42():411-419. PubMed ID: 27449336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Covalently Immobilized FGF-2 on Biphasic Calcium Phosphate Bone Substitute on Enhanced Biological Compatibility and Activity.
    Moon KS; Choi EJ; Oh S; Kim S
    Biomed Res Int; 2015; 2015():742192. PubMed ID: 26436096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radially and axially graded multizonal bone graft substitutes targeting critical-sized bone defects from polycaprolactone/hydroxyapatite/tricalcium phosphate.
    Ergun A; Yu X; Valdevit A; Ritter A; Kalyon DM
    Tissue Eng Part A; 2012 Dec; 18(23-24):2426-36. PubMed ID: 22764839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde cross-linked gelatin.
    Lin FH; Yao CH; Sun JS; Liu HC; Huang CW
    Biomaterials; 1998 May; 19(10):905-17. PubMed ID: 9690832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of osteoclast activities by SCPC bioceramic promotes osteoblast-mediated graft resorption and osteogenic differentiation.
    El-Ghannam A; Nakamura M; Muguruza LB; Sarwar U; Hassan M; Fotawi RA; Horowitz R
    J Biomed Mater Res A; 2021 Sep; 109(9):1714-1725. PubMed ID: 33733590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure.
    He F; Ye J
    J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of processing conditions of dicalcium phosphate cements on graft resorption and bone formation.
    Sheikh Z; Zhang YL; Tamimi F; Barralet J
    Acta Biomater; 2017 Apr; 53():526-535. PubMed ID: 28213100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design strategies and applications of nacre-based biomaterials.
    Gerhard EM; Wang W; Li C; Guo J; Ozbolat IT; Rahn KM; Armstrong AD; Xia J; Qian G; Yang J
    Acta Biomater; 2017 May; 54():21-34. PubMed ID: 28274766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs.
    Sun L; Danoux CB; Wang Q; Pereira D; Barata D; Zhang J; LaPointe V; Truckenmüller R; Bao C; Xu X; Habibovic P
    Acta Biomater; 2016 Sep; 42():364-377. PubMed ID: 27318269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.
    Montufar EB; Casas-Luna M; Horynová M; Tkachenko S; Fohlerová Z; Diaz-de-la-Torre S; Dvořák K; Čelko L; Kaiser J
    Acta Biomater; 2018 Apr; 70():293-303. PubMed ID: 29432984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.