These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26732665)

  • 1. Microfluidic perfusion systems for secretion fingerprint analysis of pancreatic islets: applications, challenges and opportunities.
    Castiello FR; Heileman K; Tabrizian M
    Lab Chip; 2016 Feb; 16(3):409-31. PubMed ID: 26732665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of microfluidic technology to pancreatic islet research: first decade of endeavor.
    Wang Y; Lo JF; Mendoza-Elias JE; Adewola AF; Harvat TA; Kinzer KP; Lee D; Qi M; Eddington DT; Oberholzer J
    Bioanalysis; 2010 Oct; 2(10):1729-44. PubMed ID: 21083325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of Langerhans islets by dielectrophoresis.
    Burgarella S; Merlo S; Figliuzzi M; Remuzzi A
    Electrophoresis; 2013 Apr; 34(7):1068-75. PubMed ID: 23161152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Devices for the Measurement of Cellular Secretion.
    Schrell AM; Mukhitov N; Yi L; Wang X; Roper MG
    Annu Rev Anal Chem (Palo Alto Calif); 2016 Jun; 9(1):249-69. PubMed ID: 27306310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic perifusion and imaging device for multi-parametric islet function assessment.
    Adewola AF; Lee D; Harvat T; Mohammed J; Eddington DT; Oberholzer J; Wang Y
    Biomed Microdevices; 2010 Jun; 12(3):409-17. PubMed ID: 20300858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chapter 4: Combining microfluidics and quantitative fluorescence microscopy to examine pancreatic islet molecular physiology.
    Rocheleau JV; Piston DW
    Methods Cell Biol; 2008; 89():71-92. PubMed ID: 19118673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic analysis of bone marrow mesenchymal stem cells migrating to pancreatic islets using coculture microfluidic chips: An accelerated migrating rate and better survival of pancreatic islets were revealed.
    Lin P; Chen L; Li D; Yang N; Sun Y; Xu Y
    Neuro Endocrinol Lett; 2009; 30(2):204-8. PubMed ID: 19675523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a Chip designed for scalable manufacturing.
    Glieberman AL; Pope BD; Zimmerman JF; Liu Q; Ferrier JP; Kenty JHR; Schrell AM; Mukhitov N; Shores KL; Tepole AB; Melton DA; Roper MG; Parker KK
    Lab Chip; 2019 Sep; 19(18):2993-3010. PubMed ID: 31464325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic device designed to induce media flow throughout pancreatic islets while limiting shear-induced damage.
    Silva PN; Green BJ; Altamentova SM; Rocheleau JV
    Lab Chip; 2013 Nov; 13(22):4374-84. PubMed ID: 24056576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in electric analysis of cells in microfluidic systems.
    Bao N; Wang J; Lu C
    Anal Bioanal Chem; 2008 Jun; 391(3):933-42. PubMed ID: 18335214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets.
    Lenguito G; Chaimov D; Weitz JR; Rodriguez-Diaz R; Rawal SA; Tamayo-Garcia A; Caicedo A; Stabler CL; Buchwald P; Agarwal A
    Lab Chip; 2017 Feb; 17(5):772-781. PubMed ID: 28157238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Chip with Integrated Electrophoretic Immunoassay for Investigating Cell-Cell Interactions.
    Lu S; Dugan CE; Kennedy RT
    Anal Chem; 2018 Apr; 90(8):5171-5178. PubMed ID: 29578696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic systems for live cell imaging.
    Lee P; Gaige T; Hung P
    Methods Cell Biol; 2011; 102():77-103. PubMed ID: 21704836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdevice in Cellular Pathology: Microfluidic Platforms for Fluorescence in situ Hybridization and Analysis of Circulating Tumor Cells.
    Sato K
    Anal Sci; 2015; 31(9):867-73. PubMed ID: 26353951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in microfluidics for environmental analysis.
    Jokerst JC; Emory JM; Henry CS
    Analyst; 2012 Jan; 137(1):24-34. PubMed ID: 22005445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices.
    Didar TF; Tabrizian M
    Lab Chip; 2010 Nov; 10(22):3043-53. PubMed ID: 20877893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative and temporal control of oxygen microenvironment at the single islet level.
    Lo JF; Wang Y; Li Z; Zhao Z; Hu D; Eddington DT; Oberholzer J
    J Vis Exp; 2013 Nov; (81):e50616. PubMed ID: 24299958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered microenvironments and microdevices for modeling the pathophysiology of type 1 diabetes.
    Becker MW; Simonovich JA; Phelps EA
    Biomaterials; 2019 Apr; 198():49-62. PubMed ID: 30007472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated microfluidic cell culture system for high-throughput perfusion three-dimensional cell culture-based assays: effect of cell culture model on the results of chemosensitivity assays.
    Huang SB; Wang SS; Hsieh CH; Lin YC; Lai CS; Wu MH
    Lab Chip; 2013 Mar; 13(6):1133-43. PubMed ID: 23353927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.