These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 26732666)

  • 1. Ubiquitylation as a Rheostat for TCR Signaling: From Targeted Approaches Toward Global Profiling.
    O'Leary CE; Lewis EL; Oliver PM
    Front Immunol; 2015; 6():618. PubMed ID: 26732666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microarray of ubiquitylated proteins for profiling deubiquitylase activity reveals the critical roles of both chain and substrate.
    Loch CM; Strickler JE
    Biochim Biophys Acta; 2012 Nov; 1823(11):2069-78. PubMed ID: 22626734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Getting into position: the catalytic mechanisms of protein ubiquitylation.
    Passmore LA; Barford D
    Biochem J; 2004 May; 379(Pt 3):513-25. PubMed ID: 14998368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of proteome arrays to globally identify substrates for E3 ubiquitin ligases.
    Persaud A; Rotin D
    Methods Mol Biol; 2011; 759():215-24. PubMed ID: 21863490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A portrayal of E3 ubiquitin ligases and deubiquitylases in cancer.
    Satija YK; Bhardwaj A; Das S
    Int J Cancer; 2013 Dec; 133(12):2759-68. PubMed ID: 23436247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer.
    Liu L; Wong CC; Gong B; Yu J
    Oncogene; 2018 Jan; 37(2):148-159. PubMed ID: 28925398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling and Reshaping-E3 Ligases and DUBs in the Initiation of T Cell Receptor-Mediated Signaling and Response.
    Cammann C; Israel N; Slevogt H; Seifert U
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using proteomics to identify ubiquitin ligase-substrate pairs: how novel methods may unveil therapeutic targets for neurodegenerative diseases.
    Rayner SL; Morsch M; Molloy MP; Shi B; Chung R; Lee A
    Cell Mol Life Sci; 2019 Jul; 76(13):2499-2510. PubMed ID: 30919022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct regulatory ribosomal ubiquitylation events are reversible and hierarchically organized.
    Garshott DM; Sundaramoorthy E; Leonard M; Bennett EJ
    Elife; 2020 Feb; 9():. PubMed ID: 32011234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-substrate relationships in the ubiquitin system: approaches for identifying substrates of ubiquitin ligases.
    O'Connor HF; Huibregtse JM
    Cell Mol Life Sci; 2017 Sep; 74(18):3363-3375. PubMed ID: 28455558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass Spectrometry-Based Proteomics for Investigating DNA Damage-Associated Protein Ubiquitylation.
    Heidelberger JB; Wagner SA; Beli P
    Front Genet; 2016; 7():109. PubMed ID: 27379159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, characterization, and partial purification of a novel ubiquitin-protein ligase, E3. Targeting of protein substrates via multiple and distinct recognition signals and conjugating enzymes.
    Gonen H; Stancovski I; Shkedy D; Hadari T; Bercovich B; Bengal E; Mesilati S; Abu-Hatoum O; Schwartz AL; Ciechanover A
    J Biol Chem; 1996 Jan; 271(1):302-10. PubMed ID: 8550577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deubiquitylating enzymes and their emerging role in plant biology.
    Isono E; Nagel MK
    Front Plant Sci; 2014; 5():56. PubMed ID: 24600466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic approaches for the profiling of ubiquitylation events and their applications in drug discovery.
    Hu Z; Li H; Wang X; Ullah K; Xu G
    J Proteomics; 2021 Jan; 231():103996. PubMed ID: 33017648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E3 Ubiquitin Ligases in Neurological Diseases: Focus on Gigaxonin and Autophagy.
    Lescouzères L; Bomont P
    Front Physiol; 2020; 11():1022. PubMed ID: 33192535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases.
    Jackson PK; Eldridge AG; Freed E; Furstenthal L; Hsu JY; Kaiser BK; Reimann JD
    Trends Cell Biol; 2000 Oct; 10(10):429-39. PubMed ID: 10998601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cullin 3, a cellular scripter of the non-proteolytic ubiquitin code.
    Jerabkova K; Sumara I
    Semin Cell Dev Biol; 2019 Sep; 93():100-110. PubMed ID: 30586619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Usp12 stabilizes the T-cell receptor complex at the cell surface during signaling.
    Jahan AS; Lestra M; Swee LK; Fan Y; Lamers MM; Tafesse FG; Theile CS; Spooner E; Bruzzone R; Ploegh HL; Sanyal S
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):E705-14. PubMed ID: 26811477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating the Regulators: Recent Revelations in the Control of E3 Ubiquitin Ligases.
    Vittal V; Stewart MD; Brzovic PS; Klevit RE
    J Biol Chem; 2015 Aug; 290(35):21244-51. PubMed ID: 26187467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. E3 Ubiquitin Ligases: Key Regulators of Hormone Signaling in Plants.
    Kelley DR
    Mol Cell Proteomics; 2018 Jun; 17(6):1047-1054. PubMed ID: 29514858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.