BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 26732686)

  • 1. Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer.
    Mather KJ; Hutchins GD; Perry K; Territo W; Chisholm R; Acton A; Glick-Wilson B; Considine RV; Moberly S; DeGrado TR
    Am J Physiol Endocrinol Metab; 2016 Mar; 310(6):E452-60. PubMed ID: 26732686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of 18F-fluoro-4-thia-palmitate as a PET probe for myocardial fatty acid oxidation: effects of hypoxia and composition of exogenous fatty acids.
    DeGrado TR; Kitapci MT; Wang S; Ying J; Lopaschuk GD
    J Nucl Med; 2006 Jan; 47(1):173-81. PubMed ID: 16391202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 diabetes.
    Peterson LR; Herrero P; McGill J; Schechtman KB; Kisrieva-Ware Z; Lesniak D; Gropler RJ
    Diabetes; 2008 Jan; 57(1):32-40. PubMed ID: 17914030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free fatty acid uptake in the myocardium and skeletal muscle using fluorine-18-fluoro-6-thia-heptadecanoic acid.
    Mäki MT; Haaparanta M; Nuutila P; Oikonen V; Luotolahti M; Eskola O; Knuuti JM
    J Nucl Med; 1998 Aug; 39(8):1320-7. PubMed ID: 9708500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired free fatty acid uptake in skeletal muscle but not in myocardium in patients with impaired glucose tolerance: studies with PET and 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid.
    Turpeinen AK; Takala TO; Nuutila P; Axelin T; Luotolahti M; Haaparanta M; Bergman J; Hämäläinen H; Iida H; Mäki M; Uusitupa MI; Knuuti J
    Diabetes; 1999 Jun; 48(6):1245-50. PubMed ID: 10342811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ketone Body Infusion With 3-Hydroxybutyrate Reduces Myocardial Glucose Uptake and Increases Blood Flow in Humans: A Positron Emission Tomography Study.
    Gormsen LC; Svart M; Thomsen HH; Søndergaard E; Vendelbo MH; Christensen N; Tolbod LP; Harms HJ; Nielsen R; Wiggers H; Jessen N; Hansen J; Bøtker HE; Møller N
    J Am Heart Assoc; 2017 Feb; 6(3):. PubMed ID: 28242634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism substrate with negative myocardial uptake of iodine-123-BMIPP.
    Kudoh T; Tamaki N; Magata Y; Konishi J; Nohara R; Iwasaki A; Ono S; Ohtake Y; Sugihara H; Sugihara H; Kuze K; Tsujimura Y; Miyazaki T
    J Nucl Med; 1997 Apr; 38(4):548-53. PubMed ID: 9098200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in Patients with Congestive Heart Failure.
    Taylor M; Wallhaus TR; Degrado TR; Russell DC; Stanko P; Nickles RJ; Stone CK
    J Nucl Med; 2001 Jan; 42(1):55-62. PubMed ID: 11197981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and preliminary evaluation of (18)F-labeled 4-thia palmitate as a PET tracer of myocardial fatty acid oxidation.
    DeGrado TR; Wang S; Holden JE; Nickles RJ; Taylor M; Stone CK
    Nucl Med Biol; 2000 Apr; 27(3):221-31. PubMed ID: 10832078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus.
    van der Meer RW; Rijzewijk LJ; de Jong HW; Lamb HJ; Lubberink M; Romijn JA; Bax JJ; de Roos A; Kamp O; Paulus WJ; Heine RJ; Lammertsma AA; Smit JW; Diamant M
    Circulation; 2009 Apr; 119(15):2069-77. PubMed ID: 19349323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and preliminary evaluation of 18-(18)F-fluoro-4-thia-oleate as a PET probe of fatty acid oxidation.
    DeGrado TR; Bhattacharyya F; Pandey MK; Belanger AP; Wang S
    J Nucl Med; 2010 Aug; 51(8):1310-7. PubMed ID: 20660391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PET detection of the impact of dobutamine on myocardial glucose metabolism in women with type 1 diabetes mellitus.
    Herrero P; McGill J; Lesniak DS; Dence CS; Scott SW; Kisrieva-Ware Z; Gropler RJ
    J Nucl Cardiol; 2008; 15(6):791-9. PubMed ID: 18984454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SGLT2 Inhibition Does Not Affect Myocardial Fatty Acid Oxidation or Uptake, but Reduces Myocardial Glucose Uptake and Blood Flow in Individuals With Type 2 Diabetes: A Randomized Double-Blind, Placebo-Controlled Crossover Trial.
    Lauritsen KM; Nielsen BRR; Tolbod LP; Johannsen M; Hansen J; Hansen TK; Wiggers H; Møller N; Gormsen LC; Søndergaard E
    Diabetes; 2021 Mar; 70(3):800-808. PubMed ID: 33334875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocardial uptake of the fatty acid analog 14-fluorine-18-fluoro-6-thia-heptadecanoic acid in comparison to beta-oxidation rates by tritiated palmitate.
    Stone CK; Pooley RA; DeGrado TR; Renstrom B; Nickles RJ; Nellis SH; Liedtke AJ; Holden JE
    J Nucl Med; 1998 Oct; 39(10):1690-6. PubMed ID: 9776270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes.
    Rijzewijk LJ; Jonker JT; van der Meer RW; Lubberink M; de Jong HW; Romijn JA; Bax JJ; de Roos A; Heine RJ; Twisk JW; Windhorst AD; Lammertsma AA; Smit JW; Diamant M; Lamb HJ
    J Am Coll Cardiol; 2010 Jul; 56(3):225-33. PubMed ID: 20620743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts.
    Mazumder PK; O'Neill BT; Roberts MW; Buchanan J; Yun UJ; Cooksey RC; Boudina S; Abel ED
    Diabetes; 2004 Sep; 53(9):2366-74. PubMed ID: 15331547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visceral adiposity is associated with altered myocardial glucose uptake measured by (18)FDG-PET in 346 subjects with normal glucose tolerance, prediabetes, and type 2 diabetes.
    Kim G; Jo K; Kim KJ; Lee YH; Han E; Yoon HJ; Wang HJ; Kang ES; Yun M
    Cardiovasc Diabetol; 2015 Nov; 14():148. PubMed ID: 26538247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of myocardial metabolism in diabetic rats using small-animal PET: a feasibility study.
    Welch MJ; Lewis JS; Kim J; Sharp TL; Dence CS; Gropler RJ; Herrero P
    J Nucl Med; 2006 Apr; 47(4):689-97. PubMed ID: 16595504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal myocardial kinetics of 123I-heptadecanoic acid in subjects with impaired glucose tolerance.
    Turpeinen AK; Kuikka JT; Vanninen E; Uusitupa MI
    Diabetologia; 1997 May; 40(5):541-9. PubMed ID: 9165222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic remodelling of glucose, fatty acid and redox pathways in the heart of type 2 diabetic mice.
    Cortassa S; Caceres V; Tocchetti CG; Bernier M; de Cabo R; Paolocci N; Sollott SJ; Aon MA
    J Physiol; 2020 Apr; 598(7):1393-1415. PubMed ID: 30462352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.