These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26732696)

  • 1. Measurement of wheelchair contact force with a low cost bench test.
    Silva LC; Dedini FG; Corrêa FC; Eckert JJ; Becker M
    Med Eng Phys; 2016 Feb; 38(2):163-70. PubMed ID: 26732696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lateral dynamics of a wheelchair: identification and analysis of tire parameters.
    Silva LC; Corrêa FC; Eckert JJ; Santiciolli FM; Dedini FG
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):332-341. PubMed ID: 28095721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheelchair caster shimmy and turning resistance.
    Kauzlarich JJ; Bruning T; Thacker JG
    J Rehabil Res Dev; 1984 Jul; 21(2):15-29. PubMed ID: 6530672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of an Optical Test Bench for Tire Properties Measurement and Tread Defects Characterization.
    Castillo Aguilar JJ; Cabrera Carrillo JA; Guerra Fernández AJ; Postigo Pozo S
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28353674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of rolling resistance in manual wheelchair wheels and casters using drum-based testing.
    Ott J; Wilson-Jene H; Koontz A; Pearlman J
    Disabil Rehabil Assist Technol; 2022 Aug; 17(6):719-730. PubMed ID: 32924657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional instability of rear caster wheelchairs.
    Collins TJ; Kauzlarich JJ
    J Rehabil Res Dev; 1988; 25(3):1-18. PubMed ID: 3411523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique.
    de Groot S; Vegter RJ; van der Woude LH
    Med Eng Phys; 2013 Oct; 35(10):1476-82. PubMed ID: 23642660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A five-wheel wheelchair with an active-caster drive system.
    Munakata Y; Tanaka A; Wada M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650438. PubMed ID: 24187256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of wheelchair tire rolling resistance using dynamometer-based coast-down tests.
    Kwarciak AM; Yarossi M; Ramanujam A; Dyson-Hudson TA; Sisto SA
    J Rehabil Res Dev; 2009; 46(7):931-8. PubMed ID: 20104415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of wheels and tires on high-strength lightweight wheelchair propulsion cost using a robotic wheelchair tester.
    Misch J; Sprigle S
    Disabil Rehabil Assist Technol; 2023 Nov; 18(8):1393-1403. PubMed ID: 34958616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tests of two new polyurethane foam wheelchair tires.
    Gordon J; Kauzlarich JJ; Thacker JG
    J Rehabil Res Dev; 1989; 26(1):33-46. PubMed ID: 2918486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wheelchair tire rolling resistance and fatigue.
    Kauzlarich JJ; Thacker JG
    J Rehabil Res Dev; 1985 Jul; 22(3):25-41. PubMed ID: 3835263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical effects of rear-wheel camber on wheelchairs.
    Trudel G; Kirby RL; Bell AC
    Assist Technol; 1995; 7(2):79-86. PubMed ID: 10159861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Strain-Based Method to Estimate Tire Parameters for Intelligent Tires under Complex Maneuvering Operations.
    Mendoza-Petit MF; Garcia-Pozuelo D; Diaz V; Olatunbosun O
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles.
    Nam K
    Sensors (Basel); 2015 Nov; 15(11):28385-401. PubMed ID: 26569246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wheelchair pushrim kinetics measurement: A method to cancel inaccuracies due to pushrim weight and wheel camber.
    Chénier F; Aissaoui R; Gauthier C; Gagnon DH
    Med Eng Phys; 2017 Feb; 40():75-86. PubMed ID: 27988329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of wheelchair resistive forces during straight and turning trajectories across different wheelchair configurations using free-wheeling coast-down test.
    Lin JT; Huang M; Sprigle S
    J Rehabil Res Dev; 2015; 52(7):763-74. PubMed ID: 26745011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a Robotic System to Measure Propulsion Work of Over-Ground Wheelchair Maneuvers.
    Liles H; Huang M; Caspall J; Sprigle S
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):983-91. PubMed ID: 25420269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in inertia and effect on turning effort across different wheelchair configurations.
    Caspall JJ; Seligsohn E; Dao PV; Sprigle S
    J Rehabil Res Dev; 2013; 50(10):1353-62. PubMed ID: 24699971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of caster wheel diameter and mass distribution on drag forces in manual wheelchairs.
    Zepeda R; Chan F; Sawatzky B
    J Rehabil Res Dev; 2016; 53(6):893-900. PubMed ID: 28475204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.