These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26732866)

  • 21. The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation.
    Venugopalan V; Nishioka NS; Mikić BB
    Biophys J; 1995 Oct; 69(4):1259-71. PubMed ID: 8534796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of laser-induced air breakdown on femtosecond laser ablation of aluminum.
    Zhang H; Zhang F; Du X; Dong G; Qiu J
    Opt Express; 2015 Jan; 23(2):1370-6. PubMed ID: 25835895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of plasmas produced by laser ablation using single and double pulses for food analysis demonstrated by probing potato skins.
    Beldjilali S; Yip WL; Hermann J; Baba-Hamed T; Belasri A
    Anal Bioanal Chem; 2011 Jun; 400(7):2173-83. PubMed ID: 21461618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation.
    Serrano J; Moros J; Laserna JJ
    Phys Chem Chem Phys; 2016 Jan; 18(4):2398-408. PubMed ID: 26695078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-speed camera imaging for laser ablation process: for further reliable elemental analysis using inductively coupled plasma-mass spectrometry.
    Hirata T; Miyazaki Z
    Anal Chem; 2007 Jan; 79(1):147-52. PubMed ID: 17194132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronic state distributions of YBa2Cu3O(7-x) laser-ablated plumes.
    Kee PD; Perram GP
    Appl Spectrosc; 2010 Jul; 64(7):742-9. PubMed ID: 20615287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectroscopic modeling and characterization of a collisionally confined laser-ablated plasma plume.
    Sherrill ME; Mancini RC; Bailey J; Filuk A; Clark B; Lake P; Abdallah J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056401. PubMed ID: 18233770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ analysis of metal melts in metallurgic vacuum devices by laser-induced breakdown spectroscopy.
    Gruber J; Heitz J; Arnold N; Bäuerle D; Ramaseder N; Meyer W; Hochörtler J; Koch F
    Appl Spectrosc; 2004 Apr; 58(4):457-62. PubMed ID: 17140495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pressure effects in laser-induced plasmas of trinitrotoluene and pyrene by laser-induced breakdown spectroscopy (LIBS).
    Delgado T; Vadillo JM; Laserna JJ
    Appl Spectrosc; 2014; 68(1):33-8. PubMed ID: 24405951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphological changes in ultrafast laser ablation plumes with varying spot size.
    Harilal SS; Diwakar PK; Polek MP; Phillips MC
    Opt Express; 2015 Jun; 23(12):15608-15. PubMed ID: 26193540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the Dynamics of Transient Plasmas Generated by Nanosecond Laser Ablation of Several Metals.
    Irimiciuc SA; Chertopalov S; Novotný M; Craciun V; Lancok J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air.
    Wu B; Shin YC; Pakhal H; Laurendeau NM; Lucht RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026405. PubMed ID: 17930160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Characteristic study of plasma plume produced by nanosecond pulsed laser ablation of silicon using optical emission spectroscopy].
    Gao X; Jin MX; Ding DJ; Lin JQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jun; 30(6):1657-62. PubMed ID: 20707170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence.
    Harilal SS; LaHaye NL; Phillips MC
    Opt Express; 2017 Feb; 25(3):2312-2326. PubMed ID: 29519078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plume composition and evolution in multicomponent ices using resonant two-step laser ablation and ionization mass spectrometry.
    Henderson BL; Gudipati MS
    J Phys Chem A; 2014 Jul; 118(29):5454-63. PubMed ID: 24990519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas.
    Hartig KC; Harilal SS; Phillips MC; Brumfield BE; Jovanovic I
    Opt Express; 2017 May; 25(10):11477-11490. PubMed ID: 28788713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A study of ablation, spatial, and temporal characteristics of laser-induced plasmas generated by multiple collinear pulses.
    Galbács G; Jedlinszki N; Herrera K; Omenetto N; Smith BW; Winefordner JD
    Appl Spectrosc; 2010 Feb; 64(2):161-72. PubMed ID: 20149277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gas-phase oxidation and nanoparticle formation in multi-element laser ablation plumes.
    Kautz EJ; Zelenyuk A; Gwalani B; Phillips MC; Harilal SS
    Phys Chem Chem Phys; 2022 Nov; 24(43):26583-26590. PubMed ID: 36285772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.
    Cleveland D; Stchur P; Hou X; Yang KX; Zhou J; Michel RG
    Appl Spectrosc; 2005 Dec; 59(12):1427-44. PubMed ID: 16390581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis.
    Hu H; Liu T; Zhai H
    Opt Express; 2015 Jan; 23(2):628-35. PubMed ID: 25835821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.