BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 26732958)

  • 1. The Trans-Visible Navigator: A See-Through Neuronavigation System Using Augmented Reality.
    Watanabe E; Satoh M; Konno T; Hirai M; Yamaguchi T
    World Neurosurg; 2016 Mar; 87():399-405. PubMed ID: 26732958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dex-ray: augmented reality neurosurgical navigation with a handheld video probe.
    Kockro RA; Tsai YT; Ng I; Hwang P; Zhu C; Agusanto K; Hong LX; Serra L
    Neurosurgery; 2009 Oct; 65(4):795-807; discussion 807-8. PubMed ID: 19834386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data.
    Rasmussen IA; Lindseth F; Rygh OM; Berntsen EM; Selbekk T; Xu J; Nagelhus Hernes TA; Harg E; Håberg A; Unsgaard G
    Acta Neurochir (Wien); 2007; 149(4):365-78. PubMed ID: 17308976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom.
    Cutolo F; Meola A; Carbone M; Sinceri S; Cagnazzo F; Denaro E; Esposito N; Ferrari M; Ferrari V
    Comput Assist Surg (Abingdon); 2017 Dec; 22(1):39-53. PubMed ID: 28754068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary study on the clinical application of augmented reality neuronavigation.
    Inoue D; Cho B; Mori M; Kikkawa Y; Amano T; Nakamizo A; Yoshimoto K; Mizoguchi M; Tomikawa M; Hong J; Hashizume M; Sasaki T
    J Neurol Surg A Cent Eur Neurosurg; 2013 Mar; 74(2):71-6. PubMed ID: 23404553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple brain tumor nodule resections under direct visualization of a neuronavigated endoscope.
    Di X
    Minim Invasive Neurosurg; 2007 Aug; 50(4):227-32. PubMed ID: 17948182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience.
    Caversaccio M; Langlotz F; Nolte LP; Häusler R
    Acta Otolaryngol; 2007 Apr; 127(4):403-7. PubMed ID: 17453461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.
    Besharati Tabrizi L; Mahvash M
    J Neurosurg; 2015 Jul; 123(1):206-11. PubMed ID: 25748303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart Glasses for Neurosurgical Navigation by Augmented Reality.
    Maruyama K; Watanabe E; Kin T; Saito K; Kumakiri A; Noguchi A; Nagane M; Shiokawa Y
    Oper Neurosurg (Hagerstown); 2018 Nov; 15(5):551-556. PubMed ID: 29373710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery.
    Prada F; Del Bene M; Mattei L; Lodigiani L; DeBeni S; Kolev V; Vetrano I; Solbiati L; Sakas G; DiMeco F
    Ultraschall Med; 2015 Apr; 36(2):174-86. PubMed ID: 25429625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical Feasibility of a Wearable Mixed-Reality Device in Neurosurgery.
    Incekara F; Smits M; Dirven C; Vincent A
    World Neurosurg; 2018 Oct; 118():e422-e427. PubMed ID: 30257298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surgical navigation display system using volume rendering of intraoperatively scanned CT images.
    Hayashibe M; Suzuki N; Hattori A; Otake Y; Suzuki S; Nakata N
    Comput Aided Surg; 2006 Sep; 11(5):240-6. PubMed ID: 17127649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image-guided neurosurgery with 3-dimensional multimodal imaging data on a stereoscopic monitor.
    Kockro RA; Reisch R; Serra L; Goh LC; Lee E; Stadie AT
    Neurosurgery; 2013 Jan; 72 Suppl 1():78-88. PubMed ID: 23254816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volumegraph (overlaid three-dimensional image-guided navigation). Clinical application of augmented reality in neurosurgery.
    Iseki H; Masutani Y; Iwahara M; Tanikawa T; Muragaki Y; Taira T; Dohi T; Takakura K
    Stereotact Funct Neurosurg; 1997; 68(1-4 Pt 1):18-24. PubMed ID: 9711690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Augmented Reality to Stereotactic Biopsy.
    Satoh M; Nakajima T; Yamaguchi T; Watanabe E; Kawai K
    Neurol Med Chir (Tokyo); 2019 Nov; 59(11):444-447. PubMed ID: 31548442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmented reality-assisted bypass surgery: embracing minimal invasiveness.
    Cabrilo I; Schaller K; Bijlenga P
    World Neurosurg; 2015 Apr; 83(4):596-602. PubMed ID: 25527874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time neuronavigation with high-quality 3D ultrasound SonoWand in pediatric neurosurgery.
    Roth J; Biyani N; Beni-Adani L; Constantini S
    Pediatr Neurosurg; 2007; 43(3):185-91. PubMed ID: 17409787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmented reality in the surgery of cerebral aneurysms: a technical report.
    Cabrilo I; Bijlenga P; Schaller K
    Neurosurgery; 2014 Jun; 10 Suppl 2():252-60; discussion 260-1. PubMed ID: 24594927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurosurgical Virtual Reality Simulation for Brain Tumor Using High-definition Computer Graphics: A Review of the Literature.
    Kin T; Nakatomi H; Shono N; Nomura S; Saito T; Oyama H; Saito N
    Neurol Med Chir (Tokyo); 2017 Oct; 57(10):513-520. PubMed ID: 28637947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas.
    Mert A; Kiesel B; Wöhrer A; Martínez-Moreno M; Minchev G; Furtner J; Knosp E; Wolfsberger S; Widhalm G
    Neurosurg Focus; 2015 Jan; 38(1):E4. PubMed ID: 25552284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.