BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 26733287)

  • 1. The effect of phenotypic outliers and non-normality on rare-variant association testing.
    Auer PL; Reiner AP; Leal SM
    Eur J Hum Genet; 2016 Aug; 24(8):1188-94. PubMed ID: 26733287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rank-based normalization method with the fully adjusted full-stage procedure in genetic association studies.
    Chien LC
    PLoS One; 2020; 15(6):e0233847. PubMed ID: 32559184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies.
    McCaw ZR; Lane JM; Saxena R; Redline S; Lin X
    Biometrics; 2020 Dec; 76(4):1262-1272. PubMed ID: 31883270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic extremes in rare variant study designs.
    Peloso GM; Rader DJ; Gabriel S; Kathiresan S; Daly MJ; Neale BM
    Eur J Hum Genet; 2016 Jun; 24(6):924-30. PubMed ID: 26350511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are your covariates under control? How normalization can re-introduce covariate effects.
    Pain O; Dudbridge F; Ronald A
    Eur J Hum Genet; 2018 Aug; 26(8):1194-1201. PubMed ID: 29706643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the power of association tests for quantitative traits in family studies.
    Diao G; Lin DY
    Genet Epidemiol; 2006 May; 30(4):301-13. PubMed ID: 16607624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A copula-based set-variant association test for bivariate continuous, binary or mixed phenotypes.
    St-Pierre J; Oualkacha K
    Int J Biostat; 2023 Nov; 19(2):369-387. PubMed ID: 36279152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of gene-based rare variant association mapping methods for quantitative traits in a bovine population with complex familial relationships.
    Zhang Q; Guldbrandtsen B; Calus MP; Lund MS; Sahana G
    Genet Sel Evol; 2016 Aug; 48(1):60. PubMed ID: 27534618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Searching for missing heritability: designing rare variant association studies.
    Zuk O; Schaffner SF; Samocha K; Do R; Hechter E; Kathiresan S; Daly MJ; Neale BM; Sunyaev SR; Lander ES
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):E455-64. PubMed ID: 24443550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of winsorization on power and type 1 error of variance components and related methods of QTL detection.
    Shete S; Beasley TM; Etzel CJ; Fernández JR; Chen J; Allison DB; Amos CI
    Behav Genet; 2004 Mar; 34(2):153-9. PubMed ID: 14755180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A robust distribution-free test for genetic association studies of quantitative traits.
    Kozlitina J; Schucany WR
    Stat Appl Genet Mol Biol; 2015 Nov; 14(5):443-64. PubMed ID: 26426896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type I error rates of rare single nucleotide variants are inflated in tests of association with non-normally distributed traits using simple linear regression methods.
    Schwantes-An TH; Sung H; Sabourin JA; Justice CM; Sorant AJM; Wilson AF
    BMC Proc; 2016; 10(Suppl 7):385-388. PubMed ID: 27980666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rare variant association test in family-based designs and non-normal quantitative traits.
    Lakhal-Chaieb L; Oualkacha K; Richards BJ; Greenwood CM
    Stat Med; 2016 Mar; 35(6):905-21. PubMed ID: 26420132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Box-Cox transformation on power of Haseman-Elston and maximum-likelihood variance components tests to detect quantitative trait Loci.
    Etzel CJ; Shete S; Beasley TM; Fernandez JR; Allison DB; Amos CI
    Hum Hered; 2003; 55(2-3):108-16. PubMed ID: 12931049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the power of sib pair quantitative trait loci detection by phenotype winsorization.
    Fernández JR; Etzel C; Beasley TM; Shete S; Amos CI; Allison DB
    Hum Hered; 2002; 53(2):59-67. PubMed ID: 12037405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for testing association between uncertain genotypes and quantitative traits.
    Kutalik Z; Johnson T; Bochud M; Mooser V; Vollenweider P; Waeber G; Waterworth D; Beckmann JS; Bergmann S
    Biostatistics; 2011 Jan; 12(1):1-17. PubMed ID: 20543033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of statistical methodologies for the detection of parent-of-origin effects in family trio genome-wide association data with binary disease traits.
    Connolly S; Heron EA
    Brief Bioinform; 2015 May; 16(3):429-48. PubMed ID: 24903222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostic tools in linkage analysis for quantitative traits.
    de Andrade M; Fridley B; Boerwinkle E; Turner S
    Genet Epidemiol; 2003 May; 24(4):302-8. PubMed ID: 12687648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fully adjusted two-stage procedure for rank-normalization in genetic association studies.
    Sofer T; Zheng X; Gogarten SM; Laurie CA; Grinde K; Shaffer JR; Shungin D; O'Connell JR; Durazo-Arvizo RA; Raffield L; Lange L; Musani S; Vasan RS; Cupples LA; Reiner AP; ; Laurie CC; Rice KM
    Genet Epidemiol; 2019 Apr; 43(3):263-275. PubMed ID: 30653739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-inactivation informs variance-based testing for X-linked association of a quantitative trait.
    Ma L; Hoffman G; Keinan A
    BMC Genomics; 2015 Mar; 16(1):241. PubMed ID: 25880738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.