These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26733924)

  • 1. Electroencephalographic Correlates of Sensorimotor Integration and Embodiment during the Appreciation of Virtual Architectural Environments.
    Vecchiato G; Tieri G; Jelic A; De Matteis F; Maglione AG; Babiloni F
    Front Psychol; 2015; 6():1944. PubMed ID: 26733924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments.
    Vecchiato G; Jelic A; Tieri G; Maglione AG; De Matteis F; Babiloni F
    Cogn Process; 2015 Sep; 16 Suppl 1():425-9. PubMed ID: 26224275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sex differences in human EEG theta oscillations during spatial navigation in virtual reality.
    Kober SE; Neuper C
    Int J Psychophysiol; 2011 Mar; 79(3):347-55. PubMed ID: 21146566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study.
    Slobounov SM; Ray W; Johnson B; Slobounov E; Newell KM
    Int J Psychophysiol; 2015 Mar; 95(3):254-60. PubMed ID: 25448267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Enactive Approach to Architectural Experience: A Neurophysiological Perspective on Embodiment, Motivation, and Affordances.
    Jelić A; Tieri G; De Matteis F; Babiloni F; Vecchiato G
    Front Psychol; 2016; 7():481. PubMed ID: 27065937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient visual perturbations boost short-term balance learning in virtual reality by modulating electrocortical activity.
    Peterson SM; Rios E; Ferris DP
    J Neurophysiol; 2018 Oct; 120(4):1998-2010. PubMed ID: 30044183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Posterior EEG Theta Band to Assess the Effects of Architectural Designs on Landmark Recognition in an Urban Setting.
    Rounds JD; Cruz-Garza JG; Kalantari S
    Front Hum Neurosci; 2020; 14():584385. PubMed ID: 33362491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embodiment and Presence in Virtual Reality After Stroke. A Comparative Study With Healthy Subjects.
    Borrego A; Latorre J; Alcañiz M; Llorens R
    Front Neurol; 2019; 10():1061. PubMed ID: 31649608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation of frontal-midline delta-theta and posterior alpha oscillations: A mobile EEG study.
    Liang M; Starrett MJ; Ekstrom AD
    Psychophysiology; 2018 Sep; 55(9):e13090. PubMed ID: 29682758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing physiological responses during cognitive tests in virtual environments vs. in identical real-world environments.
    Kalantari S; Rounds JD; Kan J; Tripathi V; Cruz-Garza JG
    Sci Rep; 2021 May; 11(1):10227. PubMed ID: 33986337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band.
    Crone NE; Miglioretti DL; Gordon B; Lesser RP
    Brain; 1998 Dec; 121 ( Pt 12)():2301-15. PubMed ID: 9874481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobile brain/body imaging of landmark-based navigation with high-density EEG.
    Delaux A; de Saint Aubert JB; Ramanoël S; Bécu M; Gehrke L; Klug M; Chavarriaga R; Sahel JA; Gramann K; Arleo A
    Eur J Neurosci; 2021 Dec; 54(12):8256-8282. PubMed ID: 33738880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: an EEG study.
    Kober SE; Kurzmann J; Neuper C
    Int J Psychophysiol; 2012 Mar; 83(3):365-74. PubMed ID: 22206906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Landmarks on Wayfinding and Brain Connectivity in Immersive Virtual Reality Environment.
    Sharma G; Kaushal Y; Chandra S; Singh V; Mittal AP; Dutt V
    Front Psychol; 2017; 8():1220. PubMed ID: 28775698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological Arousal Quantifying Perception of Safe and Unsafe Virtual Environments by Older and Younger Adults.
    Leite S; Dias MS; Eloy S; Freitas J; Marques S; Pedro T; Ourique L
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical Modulation of Motor Control Biofeedback among the Elderly with High Fall Risk during a Posture Perturbation Task with Augmented Reality.
    Chang CJ; Yang TF; Yang SW; Chern JS
    Front Aging Neurosci; 2016; 8():80. PubMed ID: 27199732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring arousal and valence generated by the dynamic experience of architectural forms in virtual environments.
    Presti P; Ruzzon D; Avanzini P; Caruana F; Rizzolatti G; Vecchiato G
    Sci Rep; 2022 Aug; 12(1):13376. PubMed ID: 35927322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between electroencephalographic data and comfort perception captured in a Virtual Reality design environment of an aircraft cabin.
    Ricci G; De Crescenzio F; Santhosh S; Magosso E; Ursino M
    Sci Rep; 2022 Jun; 12(1):10938. PubMed ID: 35768460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The functional role of human right hippocampal/parahippocampal theta rhythm in environmental encoding during virtual spatial navigation.
    Pu Y; Cornwell BR; Cheyne D; Johnson BW
    Hum Brain Mapp; 2017 Mar; 38(3):1347-1361. PubMed ID: 27813230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG correlates of spatial orientation in the human retrosplenial complex.
    Lin CT; Chiu TC; Gramann K
    Neuroimage; 2015 Oct; 120():123-32. PubMed ID: 26163801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.