These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 26733968)

  • 1. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea.
    Arshad A; Speth DR; de Graaf RM; Op den Camp HJ; Jetten MS; Welte CU
    Front Microbiol; 2015; 6():1423. PubMed ID: 26733968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrate- and nitrite-dependent anaerobic oxidation of methane.
    Welte CU; Rasigraf O; Vaksmaa A; Versantvoort W; Arshad A; Op den Camp HJ; Jetten MS; Lüke C; Reimann J
    Environ Microbiol Rep; 2016 Dec; 8(6):941-955. PubMed ID: 27753265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.
    Haroon MF; Hu S; Shi Y; Imelfort M; Keller J; Hugenholtz P; Yuan Z; Tyson GW
    Nature; 2013 Aug; 500(7464):567-70. PubMed ID: 23892779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.
    Gambelli L; Guerrero-Cruz S; Mesman RJ; Cremers G; Jetten MSM; Op den Camp HJM; Kartal B; Lueke C; van Niftrik L
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of anaerobic nitrate-dependent methanotrophic 'Candidatus Methanoperedens nitroreducens' archaea from an Italian paddy field soil.
    Vaksmaa A; Guerrero-Cruz S; van Alen TA; Cremers G; Ettwig KF; Lüke C; Jetten MSM
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):7075-7084. PubMed ID: 28779290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Reduced F
    Heryakusuma C; Susanti D; Yu H; Li Z; Purwantini E; Hettich RL; Orphan VJ; Mukhopadhyay B
    J Bacteriol; 2022 Jul; 204(7):e0007822. PubMed ID: 35695516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse Methanogenesis and Respiration in Methanotrophic Archaea.
    Timmers PH; Welte CU; Koehorst JJ; Plugge CM; Jetten MS; Stams AJ
    Archaea; 2017; 2017():1654237. PubMed ID: 28154498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Genome-Scale Metabolic Model of
    He B; Cai C; McCubbin T; Muriel JC; Sonnenschein N; Hu S; Yuan Z; Marcellin E
    Metabolites; 2022 Mar; 12(4):. PubMed ID: 35448501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic oxidation of methane: an "active" microbial process.
    Cui M; Ma A; Qi H; Zhuang X; Zhuang G
    Microbiologyopen; 2015 Feb; 4(1):1-11. PubMed ID: 25530008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of central energy metabolism-related protein complexes of ANME-2d methanotrophic archaea by complexome profiling.
    Berger S; Cabrera-Orefice A; Jetten MSM; Brandt U; Welte CU
    Biochim Biophys Acta Bioenerg; 2021 Jan; 1862(1):148308. PubMed ID: 33002447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles.
    Nie WB; Ding J; Xie GJ; Tan X; Lu Y; Peng L; Liu BF; Xing DF; Yuan Z; Ren N
    Water Res; 2021 Apr; 194():116928. PubMed ID: 33618110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors.
    Glodowska M; Welte CU; Kurth JM
    Adv Microb Physiol; 2022; 80():157-201. PubMed ID: 35489791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments.
    Shen LD; Wu HS; Liu X; Li J
    Water Res; 2017 Oct; 123():162-172. PubMed ID: 28668629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic oxidation of methane driven by different electron acceptors: A review.
    Zhao Y; Liu Y; Cao S; Hao Q; Liu C; Li Y
    Sci Total Environ; 2024 Oct; 946():174287. PubMed ID: 38945238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active pathways of anaerobic methane oxidation across contrasting riverbeds.
    Shen LD; Ouyang L; Zhu Y; Trimmer M
    ISME J; 2019 Mar; 13(3):752-766. PubMed ID: 30375505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Membrane-Bound Cytochrome Enables
    Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d.
    Bai YN; Wang XN; Wu J; Lu YZ; Fu L; Zhang F; Lau TC; Zeng RJ
    Water Res; 2019 Nov; 164():114935. PubMed ID: 31387057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Quality Draft Genome Sequence of "
    Berger S; Frank J; Dalcin Martins P; Jetten MSM; Welte CU
    Genome Announc; 2017 Nov; 5(46):. PubMed ID: 29146846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of the Anaerobic Methanotroph "
    Guerrero-Cruz S; Cremers G; van Alen TA; Op den Camp HJM; Jetten MSM; Rasigraf O; Vaksmaa A
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30291120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron Bifurcation and Confurcation in Methanogenesis and Reverse Methanogenesis.
    Yan Z; Ferry JG
    Front Microbiol; 2018; 9():1322. PubMed ID: 29973922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.