These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 26734055)

  • 1. A Bird's-Eye View of Molecular Changes in Plant Gravitropism Using Omics Techniques.
    Schüler O; Hemmersbach R; Böhmer M
    Front Plant Sci; 2015; 6():1176. PubMed ID: 26734055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An active role of the amyloplasts and nuclei of root statocytes in graviperception.
    Kordyum E; Guikema J
    Adv Space Res; 2001; 27(5):951-6. PubMed ID: 11596638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Microgravity and root gravitropism].
    Perbal G; Driss-Ecole D
    Acta Bot Gall; 1993; 140(6):615-32. PubMed ID: 11541735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant responses to hypergravity: a comprehensive review.
    Hosamani R; Swamy BK; Dsouza A; Sathasivam M
    Planta; 2022 Dec; 257(1):17. PubMed ID: 36534189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana.
    Zupanska AK; Denison FC; Ferl RJ; Paul AL
    Am J Bot; 2013 Jan; 100(1):235-48. PubMed ID: 23258370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ARG1 and ARL2 form an actin-based gravity-signaling chaperone complex in root statocytes?
    Harrison B; Masson PH
    Plant Signal Behav; 2008 Sep; 3(9):650-3. PubMed ID: 19704815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets.
    Volkmann D; Buchen B; Hejnowicz Z; Tewinkel M; Sievers A
    Planta; 1991; 185():153-61. PubMed ID: 11538120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant biology in reduced gravity on the Moon and Mars.
    Kiss JZ
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():12-7. PubMed ID: 23889757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How plants grow under gravity conditions besides 1 g: perspectives from hypergravity and space experiments that employ bryophytes as a model organism.
    Kume A; Kamachi H; Onoda Y; Hanba YT; Hiwatashi Y; Karahara I; Fujita T
    Plant Mol Biol; 2021 Nov; 107(4-5):279-291. PubMed ID: 33852087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The change of gravity vector induces short-term phosphoproteomic alterations in Arabidopsis.
    Yang Z; Guo G; Yang N; Pun SS; Ho TKL; Ji L; Hu I; Zhang J; Burlingame AL; Li N
    J Proteomics; 2020 Apr; 218():103720. PubMed ID: 32120044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium signaling in plant cells in altered gravity.
    Kordyum EL
    Adv Space Res; 2003; 32(8):1621-30. PubMed ID: 15002419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant responses to gravity.
    Vandenbrink JP; Kiss JZ
    Semin Cell Dev Biol; 2019 Aug; 92():122-125. PubMed ID: 30935972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets.
    Volkmann D; Buchen B; Hejnowicz Z; Tewinkel M; Sievers A
    Planta; 1991 Sep; 185(2):153-61. PubMed ID: 24186337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Integrative Model of Plant Gravitropism Linking Statoliths Position and Auxin Transport.
    Levernier N; Pouliquen O; Forterre Y
    Front Plant Sci; 2021; 12():651928. PubMed ID: 33854523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spaceflight induces novel regulatory responses in Arabidopsis seedling as revealed by combined proteomic and transcriptomic analyses.
    Kruse CPS; Meyers AD; Basu P; Hutchinson S; Luesse DR; Wyatt SE
    BMC Plant Biol; 2020 May; 20(1):237. PubMed ID: 32460700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human neural network activity reacts to gravity changes
    Striebel J; Kalinski L; Sturm M; Drouvé N; Peters S; Lichterfeld Y; Habibey R; Hauslage J; El Sheikh S; Busskamp V; Liemersdorf C
    Front Neurosci; 2023; 17():1085282. PubMed ID: 36968488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance of plants to gravitational force.
    Soga K
    J Plant Res; 2013 Sep; 126(5):589-96. PubMed ID: 23732635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of amyloplast movement in cress root statocytes under different gravitational loads.
    Gaina V; Svegzdiene D; Rakleviciene D; Koryzniene D; Staneviciene R; Laurinavicius R
    Adv Space Res; 2003; 31(10):2275-81. PubMed ID: 14686443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravitational biology within the German Space Program: goals, achievements, and perspectives.
    Ruyters G; Friedrich U
    Protoplasma; 2006 Dec; 229(2-4):95-100. PubMed ID: 17180489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statoliths motions in gravity-perceiving plant cells: does actomyosin counteract gravity?
    Volkmann D; Baluska F; Lichtscheidl I; Driss-Ecole D; Perbal G
    FASEB J; 1999; 13 Suppl():S143-7. PubMed ID: 10352156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.