These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 26734843)
1. Tet2 Catalyzes Stepwise 5-Methylcytosine Oxidation by an Iterative and de novo Mechanism. Crawford DJ; Liu MY; Nabel CS; Cao XJ; Garcia BA; Kohli RM J Am Chem Soc; 2016 Jan; 138(3):730-3. PubMed ID: 26734843 [TBL] [Abstract][Full Text] [Related]
2. Mutations along a TET2 active site scaffold stall oxidation at 5-hydroxymethylcytosine. Liu MY; Torabifard H; Crawford DJ; DeNizio JE; Cao XJ; Garcia BA; Cisneros GA; Kohli RM Nat Chem Biol; 2017 Feb; 13(2):181-187. PubMed ID: 27918559 [TBL] [Abstract][Full Text] [Related]
3. Maintenance DNA Methyltransferase Activity in the Presence of Oxidized Forms of 5-Methylcytosine: Structural Basis for Ten Eleven Translocation-Mediated DNA Demethylation. Seiler CL; Fernandez J; Koerperich Z; Andersen MP; Kotandeniya D; Nguyen ME; Sham YY; Tretyakova NY Biochemistry; 2018 Oct; 57(42):6061-6069. PubMed ID: 30230311 [TBL] [Abstract][Full Text] [Related]
4. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. Cadet J; Wagner JR Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206 [TBL] [Abstract][Full Text] [Related]
5. TET-TDG Active DNA Demethylation at CpG and Non-CpG Sites. DeNizio JE; Dow BJ; Serrano JC; Ghanty U; Drohat AC; Kohli RM J Mol Biol; 2021 Apr; 433(8):166877. PubMed ID: 33561435 [TBL] [Abstract][Full Text] [Related]
6. Sensitive and simultaneous determination of 5-methylcytosine and its oxidation products in genomic DNA by chemical derivatization coupled with liquid chromatography-tandem mass spectrometry analysis. Tang Y; Zheng SJ; Qi CB; Feng YQ; Yuan BF Anal Chem; 2015 Mar; 87(6):3445-52. PubMed ID: 25675106 [TBL] [Abstract][Full Text] [Related]
7. Using NMR to Monitor TET-Dependent Methylcytosine Dioxygenase Activity and Regulation. Treadway CJ; Boyer JA; Yang S; Yang H; Liu M; Li Z; Cheng M; Marzluff WF; Ye D; Xiong Y; Baldwin AS; Zhang Q; Brown NG ACS Chem Biol; 2024 Jan; 19(1):15-21. PubMed ID: 38193366 [TBL] [Abstract][Full Text] [Related]
8. TET2-mediated 5-hydroxymethylcytosine induces genetic instability and mutagenesis. Mahfoudhi E; Talhaoui I; Cabagnols X; Della Valle V; Secardin L; Rameau P; Bernard OA; Ishchenko AA; Abbes S; Vainchenker W; Saparbaev M; Plo I DNA Repair (Amst); 2016 Jul; 43():78-88. PubMed ID: 27289557 [TBL] [Abstract][Full Text] [Related]
9. Substrate DNA length regulates the activity of TET 5-methylcytosine dioxygenases. Bhattacharya C; Dey AS; Mukherji M Cell Biochem Funct; 2023 Aug; 41(6):704-712. PubMed ID: 37349892 [TBL] [Abstract][Full Text] [Related]
10. Quantification of Oxidized 5-Methylcytosine Bases and TET Enzyme Activity. Liu MY; DeNizio JE; Kohli RM Methods Enzymol; 2016; 573():365-85. PubMed ID: 27372762 [TBL] [Abstract][Full Text] [Related]
11. Charting oxidized methylcytosines at base resolution. Wu H; Zhang Y Nat Struct Mol Biol; 2015 Sep; 22(9):656-61. PubMed ID: 26333715 [TBL] [Abstract][Full Text] [Related]
12. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Ko M; An J; Bandukwala HS; Chavez L; Aijö T; Pastor WA; Segal MF; Li H; Koh KP; Lähdesmäki H; Hogan PG; Aravind L; Rao A Nature; 2013 May; 497(7447):122-6. PubMed ID: 23563267 [TBL] [Abstract][Full Text] [Related]
13. A mechanistic overview of TET-mediated 5-methylcytosine oxidation. Ponnaluri VK; Maciejewski JP; Mukherji M Biochem Biophys Res Commun; 2013 Jun; 436(2):115-20. PubMed ID: 23727577 [TBL] [Abstract][Full Text] [Related]
14. 5-methylcytosine and its derivatives. Yuan BF Adv Clin Chem; 2014; 67():151-87. PubMed ID: 25735861 [TBL] [Abstract][Full Text] [Related]
15. Ten-eleven translocation-2 affects the fate of cells and has therapeutic potential in digestive tumors. Wang F; Zhang J; Qi J Chronic Dis Transl Med; 2019 Dec; 5(4):267-272. PubMed ID: 32055786 [TBL] [Abstract][Full Text] [Related]
16. 5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA. Kriukienė E; Tomkuvienė M; Klimašauskas S Chem Soc Rev; 2024 Mar; 53(5):2264-2283. PubMed ID: 38205583 [TBL] [Abstract][Full Text] [Related]
17. Dynamic expression of TET1, TET2, and TET3 dioxygenases in mouse and human placentas throughout gestation. Rakoczy J; Padmanabhan N; Krzak AM; Kieckbusch J; Cindrova-Davies T; Watson ED Placenta; 2017 Nov; 59():46-56. PubMed ID: 29108636 [TBL] [Abstract][Full Text] [Related]
18. Effects of Tet-mediated oxidation products of 5-methylcytosine on DNA transcription in vitro and in mammalian cells. You C; Ji D; Dai X; Wang Y Sci Rep; 2014 Nov; 4():7052. PubMed ID: 25394478 [TBL] [Abstract][Full Text] [Related]
19. Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter. Kitsera N; Allgayer J; Parsa E; Geier N; Rossa M; Carell T; Khobta A Nucleic Acids Res; 2017 Nov; 45(19):11033-11042. PubMed ID: 28977475 [TBL] [Abstract][Full Text] [Related]
20. 5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy. Vasanthakumar A; Godley LA Cancer Genet; 2015 May; 208(5):167-77. PubMed ID: 25892122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]