BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26734855)

  • 1. Characterization of the Stiffness of Multiple Particles Trapped by Dielectrophoretic Tweezers in a Microfluidic Device.
    Son M; Choi S; Ko KH; Kim MH; Lee SY; Key J; Yoon YR; Park IS; Lee SW
    Langmuir; 2016 Jan; 32(3):922-7. PubMed ID: 26734855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip supercontinuum optical trapping and resonance excitation of microspheres.
    Nitkowski A; Gondarenko A; Lipson M
    Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of geometry on dielectrophoretic trap stiffness in microparticle trapping.
    Rahman MRU; Kwak TJ; Woehl JC; Chang WJ
    Biomed Microdevices; 2021 Jun; 23(3):33. PubMed ID: 34185161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Linear Cellular Dielectrophoretic Behavior Characterization Using Dielectrophoretic Tweezers-Based Force Spectroscopy inside a Microfluidic Device.
    Choi S; Ko K; Lim J; Kim SH; Woo SH; Kim YS; Key J; Lee SY; Park IS; Lee SW
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas.
    Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG
    Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microlens-array-enabled on-chip optical trapping and sorting.
    Zhao X; Sun Y; Bu J; Zhu S; Yuan XC
    Appl Opt; 2011 Jan; 50(3):318-22. PubMed ID: 21263729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Dielectrophoretic Tweezers-Based Force Spectroscopy System in a Microfluidic Device.
    Kim MH; Lee J; Nam K; Park IS; Son M; Ko H; Lee S; Yoon DS; Chang WJ; Lee SY; Yoon YR; Lee SW
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28976941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double nanohole optical trapping: dynamics and protein-antibody co-trapping.
    Zehtabi-Oskuie A; Jiang H; Cyr BR; Rennehan DW; Al-Balushi AA; Gordon R
    Lab Chip; 2013 Jul; 13(13):2563-8. PubMed ID: 23429640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative measurements of absolute dielectrophoretic forces using optical tweezers.
    Hong Y; Pyo JW; Baek SH; Lee SW; Yoon DS; No K; Kim BM
    Opt Lett; 2010 Jul; 35(14):2493-5. PubMed ID: 20634874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trapping-assisted sensing of particles and proteins using on-chip optical microcavities.
    Lin S; Crozier KB
    ACS Nano; 2013 Feb; 7(2):1725-30. PubMed ID: 23311448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple traps created with an inclined dual-fiber system.
    Liu Y; Yu M
    Opt Express; 2009 Nov; 17(24):21680-90. PubMed ID: 19997409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.
    De Coster D; Ottevaere H; Vervaeke M; Van Erps J; Callewaert M; Wuytens P; Simpson SH; Hanna S; De Malsche W; Thienpont H
    Opt Express; 2015 Nov; 23(24):30991-1009. PubMed ID: 26698730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles.
    Lin S; Crozier KB
    Lab Chip; 2011 Dec; 11(23):4047-51. PubMed ID: 22011760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film.
    Pang Y; Gordon R
    Nano Lett; 2011 Sep; 11(9):3763-7. PubMed ID: 21838243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multipoint viscosity measurements in microfluidic channels using optical tweezers.
    Keen S; Yao A; Leach J; Di Leonardo R; Saunter C; Love G; Cooper J; Padgett M
    Lab Chip; 2009 Jul; 9(14):2059-62. PubMed ID: 19568675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip optical trapping of extracellular vesicles using box-shaped composite SiO
    Loozen GB; Caro J
    Opt Express; 2018 Oct; 26(21):26985-27000. PubMed ID: 30469775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of nanoparticle size distributions using a microfluidic device with integrated optical microcavities.
    Malmir K; Okell W; Trichet AAP; Smith JM
    Lab Chip; 2022 Sep; 22(18):3499-3507. PubMed ID: 35968777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable optical tweezers for wavelength-dependent measurements.
    Hester B; Campbell GK; López-Mariscal C; Filgueira CL; Huschka R; Halas NJ; Helmerson K
    Rev Sci Instrum; 2012 Apr; 83(4):043114. PubMed ID: 22559522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.