BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26735242)

  • 1. Structure of developmental gene regulatory networks from the perspective of cell fate-determining genes.
    Martín M; Organista MF; de Celis JF
    Transcription; 2016; 7(1):32-7. PubMed ID: 26735242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-genome prediction of cis-regulatory modules and target genes yields insight into gene regulatory networks underlying sensory differentiation.
    Aerts S; Hassan B
    Fly (Austin); 2011; 5(3):221-3. PubMed ID: 21471735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of cis-regulatory modules encoding temporal dynamics during development.
    Potier D; Seyres D; Guichard C; Iche-Torres M; Aerts S; Herrmann C; Perrin L
    BMC Genomics; 2014 Jun; 15(1):534. PubMed ID: 24972496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping gene regulatory networks in Drosophila eye development by large-scale transcriptome perturbations and motif inference.
    Potier D; Davie K; Hulselmans G; Naval Sanchez M; Haagen L; Huynh-Thu VA; Koldere D; Celik A; Geurts P; Christiaens V; Aerts S
    Cell Rep; 2014 Dec; 9(6):2290-303. PubMed ID: 25533349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges for modeling global gene regulatory networks during development: insights from Drosophila.
    Wilczynski B; Furlong EE
    Dev Biol; 2010 Apr; 340(2):161-9. PubMed ID: 19874814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential construction of a model for modular gene expression control, applied to spatial patterning of the Drosophila gene hunchback.
    Spirov AV; Myasnikova EM; Holloway DM
    J Bioinform Comput Biol; 2016 Apr; 14(2):1641005. PubMed ID: 27122317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and multiple roles of the Pancrustacea specific transcription factor zelda in insects.
    Ribeiro L; Tobias-Santos V; Santos D; Antunes F; Feltran G; de Souza Menezes J; Aravind L; Venancio TM; Nunes da Fonseca R
    PLoS Genet; 2017 Jul; 13(7):e1006868. PubMed ID: 28671979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification of cis-regulatory motifs and modules underlying gene coregulation using statistics and phylogeny.
    Rouault H; Mazouni K; Couturier L; Hakim V; Schweisguth F
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14615-20. PubMed ID: 20671200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis.
    Mendoza-Parra MA; Malysheva V; Mohamed Saleem MA; Lieb M; Godel A; Gronemeyer H
    Genome Res; 2016 Nov; 26(11):1505-1519. PubMed ID: 27650846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a systems-level understanding of developmental regulatory networks.
    Busser BW; Bulyk ML; Michelson AM
    Curr Opin Genet Dev; 2008 Dec; 18(6):521-9. PubMed ID: 18848887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cis-Regulatory networks during development: a view of Drosophila.
    Bonn S; Furlong EE
    Curr Opin Genet Dev; 2008 Dec; 18(6):513-20. PubMed ID: 18929653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.
    Hinman VF; Cheatle Jarvela AM
    Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redeployment of a conserved gene regulatory network during Aedes aegypti development.
    Suryamohan K; Hanson C; Andrews E; Sinha S; Scheel MD; Halfon MS
    Dev Biol; 2016 Aug; 416(2):402-13. PubMed ID: 27341759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution.
    Kittelmann S; Buffry AD; Franke FA; Almudi I; Yoth M; Sabaris G; Couso JP; Nunes MDS; Frankel N; Gómez-Skarmeta JL; Pueyo-Marques J; Arif S; McGregor AP
    PLoS Genet; 2018 May; 14(5):e1007375. PubMed ID: 29723190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A switch in transcription and cell fate governs the onset of an epigenetically-deregulated tumor in
    Torres J; Monti R; Moore AL; Seimiya M; Jiang Y; Beerenwinkel N; Beisel C; Beira JV; Paro R
    Elife; 2018 Mar; 7():. PubMed ID: 29560857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Modeling of Transcriptional Gene Regulatory Networks.
    Handzlik JE; Loh YL; Manu
    Methods Mol Biol; 2021; 2328():67-97. PubMed ID: 34251620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the Transcriptional Regulatory Network Correlates with Regulatory Divergence in Drosophila.
    Yang B; Wittkopp PJ
    Mol Biol Evol; 2017 Jun; 34(6):1352-1362. PubMed ID: 28333240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference of plant gene regulatory networks using data-driven methods: A practical overview.
    Kulkarni SR; Vandepoele K
    Biochim Biophys Acta Gene Regul Mech; 2020 Jun; 1863(6):194447. PubMed ID: 31678628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The female-specific doublesex isoform regulates pleiotropic transcription factors to pattern genital development in Drosophila.
    Chatterjee SS; Uppendahl LD; Chowdhury MA; Ip PL; Siegal ML
    Development; 2011 Mar; 138(6):1099-109. PubMed ID: 21343364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.