These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26735356)

  • 1. Ignoring Clustering in Confirmatory Factor Analysis: Some Consequences for Model Fit and Standardized Parameter Estimates.
    Pornprasertmanit S; Lee J; Preacher KJ
    Multivariate Behav Res; 2014; 49(6):518-43. PubMed ID: 26735356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polytomous multilevel testlet models for testlet-based assessments with complex sampling designs.
    Jiao H; Zhang Y
    Br J Math Stat Psychol; 2015 Feb; 68(1):65-83. PubMed ID: 24571376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ignoring a Multilevel Structure in Mixture Item Response Models: Impact on Parameter Recovery and Model Selection.
    Lee WY; Cho SJ; Sterba SK
    Appl Psychol Meas; 2018 Mar; 42(2):136-154. PubMed ID: 29882542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing individual growth with clustered longitudinal data: A comparison between model-based and design-based multilevel approaches.
    Hsu HY; Lin JJH; Skidmore ST
    Behav Res Methods; 2018 Apr; 50(2):786-803. PubMed ID: 28634725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of Ignoring the Level of Nesting Structure in Nonparametric Multilevel Latent Class Models.
    Park J; Yu HT
    Educ Psychol Meas; 2016 Oct; 76(5):824-847. PubMed ID: 29795890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting group-level outcome variables from variables measured at the individual level: a latent variable multilevel model.
    Croon MA; van Veldhoven MJ
    Psychol Methods; 2007 Mar; 12(1):45-57. PubMed ID: 17402811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ignoring clustered data structure in confirmatory factor analysis of ordered polytomous items: a simulation study based on PANSS.
    Stochl J; Jones PB; Perez J; Khandaker GM; Böhnke JR; Croudace TJ
    Int J Methods Psychiatr Res; 2016 Sep; 25(3):205-19. PubMed ID: 26096674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using iMCFA to Perform the CFA, Multilevel CFA, and Maximum Model for Analyzing Complex Survey Data.
    Wu JY; Lee YH; Lin JJH
    Front Psychol; 2018; 9():251. PubMed ID: 29593593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilevel modeling and practice-based research.
    Dickinson LM; Basu A
    Ann Fam Med; 2005; 3 Suppl 1(Suppl 1):S52-60. PubMed ID: 15928220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using clustered data to develop biomass allometric models: The consequences of ignoring the clustered data structure.
    Dutcă I; Stăncioiu PT; Abrudan IV; Ioraș F
    PLoS One; 2018; 13(8):e0200123. PubMed ID: 30071050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collinear Latent Variables in Multilevel Confirmatory Factor Analysis: A Comparison of Maximum Likelihood and Bayesian Estimations.
    Can S; van de Schoot R; Hox J
    Educ Psychol Meas; 2015 Jun; 75(3):406-427. PubMed ID: 29795827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Measurement as a Sequential Process: Autoregressive Confirmatory Factor Analysis (AR-CFA).
    Ozkok O; Zyphur MJ; Barsky AP; Theilacker M; Donnellan MB; Oswald FL
    Front Psychol; 2019; 10():2108. PubMed ID: 31616338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of ignoring clustering in linear regression.
    Ntani G; Inskip H; Osmond C; Coggon D
    BMC Med Res Methodol; 2021 Jul; 21(1):139. PubMed ID: 34233609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fitting Large Factor Analysis Models With Ordinal Data.
    DiStefano C; McDaniel HL; Zhang L; Shi D; Jiang Z
    Educ Psychol Meas; 2019 Jun; 79(3):417-436. PubMed ID: 31105317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Solution to Modeling Multilevel Confirmatory Factor Analysis with Data Obtained from Complex Survey Sampling to Avoid Conflated Parameter Estimates.
    Wu JY; Lin JJH; Nian MW; Hsiao YC
    Front Psychol; 2017; 8():1464. PubMed ID: 29018369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Not Addressing Partially Cross-Classified Multilevel Structure in Testing Measurement Invariance: A Monte Carlo Study.
    Im MH; Kim ES; Kwok OM; Yoon M; Willson VL
    Front Psychol; 2016; 7():328. PubMed ID: 27047404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Usefulness of a Multilevel Logistic Regression Approach to Person-Fit Analysis.
    Conijn JM; Emons WH; van Assen MA; Sijtsma K
    Multivariate Behav Res; 2011 Apr; 46(2):365-88. PubMed ID: 26741332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robustness of parameter and standard error estimates against ignoring a contextual effect of a subject-level covariate in cluster-randomized trials.
    Korendijk EJ; Hox JJ; Moerbeek M; Maas CJ
    Behav Res Methods; 2011 Dec; 43(4):1003-13. PubMed ID: 21512874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesizing single-case studies: a Monte Carlo examination of a three-level meta-analytic model.
    Owens CM; Ferron JM
    Behav Res Methods; 2012 Sep; 44(3):795-805. PubMed ID: 22180105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simulation study of sample size for multilevel logistic regression models.
    Moineddin R; Matheson FI; Glazier RH
    BMC Med Res Methodol; 2007 Jul; 7():34. PubMed ID: 17634107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.