These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 26735411)

  • 1. A model for genesis of transcription systems.
    Burton ZF; Opron K; Wei G; Geiger JH
    Transcription; 2016; 7(1):1-13. PubMed ID: 26735411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The σ enigma: bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs.
    Burton SP; Burton ZF
    Transcription; 2014; 5(4):e967599. PubMed ID: 25483602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Old and New Testaments of gene regulation. Evolution of multi-subunit RNA polymerases and co-evolution of eukaryote complexity with the RNAP II CTD.
    Burton ZF
    Transcription; 2014; 5(3):e28674. PubMed ID: 25764332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a conserved archaeal RNA polymerase subunit contacted by the basal transcription factor TFB.
    Magill CP; Jackson SP; Bell SD
    J Biol Chem; 2001 Dec; 276(50):46693-6. PubMed ID: 11606563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early Evolution of Transcription Systems and Divergence of Archaea and Bacteria.
    Lei L; Burton ZF
    Front Mol Biosci; 2021; 8():651134. PubMed ID: 34026831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The basal transcription factors TBP and TFB from the mesophilic archaeon Methanosarcina mazeii: structure and conformational changes upon interaction with stress-gene promoters.
    Thomsen J; De Biase A; Kaczanowski S; Macario AJ; Thomm M; Zielenkiewicz P; MacColl R; Conway de Macario E
    J Mol Biol; 2001 Jun; 309(3):589-603. PubMed ID: 11397082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archaeal chromatin and transcription.
    Reeve JN
    Mol Microbiol; 2003 May; 48(3):587-98. PubMed ID: 12694606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural evolution of multisubunit RNA polymerases.
    Werner F
    Trends Microbiol; 2008 Jun; 16(6):247-50. PubMed ID: 18468900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factor requirements for transcription in the Archaeon Sulfolobus shibatae.
    Qureshi SA; Bell SD; Jackson SP
    EMBO J; 1997 May; 16(10):2927-36. PubMed ID: 9184236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro.
    Santangelo TJ; Cubonová L; James CL; Reeve JN
    J Mol Biol; 2007 Mar; 367(2):344-57. PubMed ID: 17275836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription initiation factor TBP: old friend new questions.
    Kramm K; Engel C; Grohmann D
    Biochem Soc Trans; 2019 Feb; 47(1):411-423. PubMed ID: 30710057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prokaryotic sigma factors and their transcriptional counterparts in Archaea and Eukarya.
    Abril AG; Rama JLR; Sánchez-Pérez A; Villa TG
    Appl Microbiol Biotechnol; 2020 May; 104(10):4289-4302. PubMed ID: 32232532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The orientation of DNA in an archaeal transcription initiation complex.
    Bartlett MS; Thomm M; Geiduschek EP
    Nat Struct Biol; 2000 Sep; 7(9):782-5. PubMed ID: 10966650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS.
    Nagy J; Grohmann D; Cheung AC; Schulz S; Smollett K; Werner F; Michaelis J
    Nat Commun; 2015 Jan; 6():6161. PubMed ID: 25635909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of RNA polymerase core functions by basal transcription factor TFB/TFIIB.
    Werner F; Wiesler S; Nottebaum S; Weinzierl RO
    Biochem Soc Symp; 2006; (73):49-58. PubMed ID: 16626286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases.
    Thomm M; Reich C; Grünberg S; Naji S
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):18-22. PubMed ID: 19143595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial RNA polymerase.
    Darst SA
    Curr Opin Struct Biol; 2001 Apr; 11(2):155-62. PubMed ID: 11297923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Extended "Two-Barrel" Polymerases Superfamily: Structure, Function and Evolution.
    Sauguet L
    J Mol Biol; 2019 Sep; 431(20):4167-4183. PubMed ID: 31103775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-protein interactions in the archaeal transcriptional machinery: binding studies of isolated RNA polymerase subunits and transcription factors.
    Goede B; Naji S; von Kampen O; Ilg K; Thomm M
    J Biol Chem; 2006 Oct; 281(41):30581-92. PubMed ID: 16885163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.