These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 26735496)
21. Precaution for volume conduction in rodent cortical electroencephalography using high-density polyimide-based microelectrode arrays on the skull. Stienen PJ; Venzi M; Poppendieck W; Hoffmann KP; Åberg E J Neurophysiol; 2016 Apr; 115(4):1970-7. PubMed ID: 26864767 [TBL] [Abstract][Full Text] [Related]
22. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics. Kwon KY; Sirowatka B; Weber A; Li W IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):593-600. PubMed ID: 24144668 [TBL] [Abstract][Full Text] [Related]
23. A low-cost, multiplexed μECoG system for high-density recordings in freely moving rodents. Insanally M; Trumpis M; Wang C; Chiang CH; Woods V; Palopoli-Trojani K; Bossi S; Froemke RC; Viventi J J Neural Eng; 2016 Apr; 13(2):026030-26030. PubMed ID: 26975462 [TBL] [Abstract][Full Text] [Related]
24. [The mapping of spike-wave discharges in WAG/Rij rats (a genetic strain of absence epilepsy)]. Kuznetsova GD; Spiridonov AM Zh Vyssh Nerv Deiat Im I P Pavlova; 1998; 48(4):664-70. PubMed ID: 9778810 [TBL] [Abstract][Full Text] [Related]
25. Multichannel optogenetics combined with laminar recordings for ultra-controlled neuronal interrogation. Eriksson D; Schneider A; Thirumalai A; Alyahyay M; de la Crompe B; Sharma K; Ruther P; Diester I Nat Commun; 2022 Feb; 13(1):985. PubMed ID: 35190556 [TBL] [Abstract][Full Text] [Related]
26. Thalamo-cortical processing of near-threshold somatosensory stimuli in humans. Klostermann F; Wahl M; Schomann J; Kupsch A; Curio G; Marzinzik F Eur J Neurosci; 2009 Nov; 30(9):1815-22. PubMed ID: 19878277 [TBL] [Abstract][Full Text] [Related]
27. Multiplexed Surface Electrode Arrays Based on Metal Oxide Thin-Film Electronics for High-Resolution Cortical Mapping. Londoño-Ramírez H; Huang X; Cools J; Chrzanowska A; Brunner C; Ballini M; Hoffman L; Steudel S; Rolin C; Mora Lopez C; Genoe J; Haesler S Adv Sci (Weinh); 2024 Mar; 11(10):e2308507. PubMed ID: 38145348 [TBL] [Abstract][Full Text] [Related]
28. An improved screw-free method for electrode implantation and intracranial electroencephalographic recordings in mice. Wu C; Wais M; Zahid T; Wan Q; Zhang L Behav Res Methods; 2009 Aug; 41(3):736-41. PubMed ID: 19587186 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of μECoG electrode arrays in the minipig: experimental procedure and neurosurgical approach. Gierthmuehlen M; Ball T; Henle C; Wang X; Rickert J; Raab M; Freiman T; Stieglitz T; Kaminsky J J Neurosci Methods; 2011 Oct; 202(1):77-86. PubMed ID: 21896285 [TBL] [Abstract][Full Text] [Related]
30. Wireless opto-electro neural interface for experiments with small freely behaving animals. Jia Y; Khan W; Lee B; Fan B; Madi F; Weber A; Li W; Ghovanloo M J Neural Eng; 2018 Aug; 15(4):046032. PubMed ID: 29799437 [TBL] [Abstract][Full Text] [Related]
31. Distinction of individual finger responses in somatosensory cortex using ECoG high-gamma activation mapping. Prueckl R; Kapeller C; Kamada K; Takeuchi F; Ogawa H; Scharinger J; Guger C Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5760-3. PubMed ID: 26737601 [TBL] [Abstract][Full Text] [Related]
32. Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat. Hosp JA; Molina-Luna K; Hertler B; Atiemo CO; Stett A; Luft AR J Neurosci Methods; 2008 Jul; 172(2):255-62. PubMed ID: 18582949 [TBL] [Abstract][Full Text] [Related]
33. Cerebral cortical respiratory-related evoked potentials elicited by inspiratory occlusion in lambs. Davenport PW; Hutchison AA J Appl Physiol (1985); 2002 Jul; 93(1):31-6. PubMed ID: 12070182 [TBL] [Abstract][Full Text] [Related]
34. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Sinai A; Bowers CW; Crainiceanu CM; Boatman D; Gordon B; Lesser RP; Lenz FA; Crone NE Brain; 2005 Jul; 128(Pt 7):1556-70. PubMed ID: 15817517 [TBL] [Abstract][Full Text] [Related]
35. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835 [TBL] [Abstract][Full Text] [Related]
36. Dynamic reconfiguration of cortical functional connectivity across brain states. Stitt I; Hollensteiner KJ; Galindo-Leon E; Pieper F; Fiedler E; Stieglitz T; Engler G; Nolte G; Engel AK Sci Rep; 2017 Aug; 7(1):8797. PubMed ID: 28821753 [TBL] [Abstract][Full Text] [Related]
37. A transparent epidural electrode array for use in conjunction with optical imaging. Kunori N; Takashima I J Neurosci Methods; 2015 Aug; 251():130-7. PubMed ID: 26049111 [TBL] [Abstract][Full Text] [Related]
38. A flexible implantable microelectrode array for recording electrocorticography signals from rodents. Chatterjee S; Sakorikar T; Bs A; Joshi RK; Sikaria A; Jayachandra M; V V; Pandya HJ Biomed Microdevices; 2022 Sep; 24(4):31. PubMed ID: 36138255 [TBL] [Abstract][Full Text] [Related]
39. Whole-brain mapping of effective connectivity by fMRI with cortex-wide patterned optogenetics. Kim S; Moon HS; Vo TT; Kim CH; Im GH; Lee S; Choi M; Kim SG Neuron; 2023 Jun; 111(11):1732-1747.e6. PubMed ID: 37001524 [TBL] [Abstract][Full Text] [Related]