BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26736137)

  • 1. Incorporating Sulfur Inside the Pores of Carbons for Advanced Lithium-Sulfur Batteries: An Electrolysis Approach.
    He B; Li WC; Yang C; Wang SQ; Lu AH
    ACS Nano; 2016 Jan; 10(1):1633-9. PubMed ID: 26736137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries.
    Elazari R; Salitra G; Garsuch A; Panchenko A; Aurbach D
    Adv Mater; 2011 Dec; 23(47):5641-4. PubMed ID: 22052740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.
    Zhang J; Cai Y; Zhong Q; Lai D; Yao J
    Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.
    Li D; Han F; Wang S; Cheng F; Sun Q; Li WC
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2208-13. PubMed ID: 23452385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.
    Zhang B; Xiao M; Wang S; Han D; Song S; Chen G; Meng Y
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13174-82. PubMed ID: 25025228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries.
    Fu Y; Su YS; Manthiram A
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6046-52. PubMed ID: 23092250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells.
    Chung SH; Manthiram A
    ChemSusChem; 2014 Jun; 7(6):1655-61. PubMed ID: 24700745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable Synthesis of Honeycomb-like Ordered Mesoporous Carbon Nanosheets and Their Application in Lithium-Sulfur Batteries.
    Park SK; Lee J; Hwang T; Jang B; Piao Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2430-2438. PubMed ID: 28008762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries.
    Chen JJ; Zhang Q; Shi YN; Qin LL; Cao Y; Zheng MS; Dong QF
    Phys Chem Chem Phys; 2012 Apr; 14(16):5376-82. PubMed ID: 22382743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cable-Shaped Lithium Sulfur Battery.
    Fang X; Weng W; Ren J; Peng H
    Adv Mater; 2016 Jan; 28(3):491-6. PubMed ID: 26585740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries.
    Zhao C; Liu L; Zhao H; Krall A; Wen Z; Chen J; Hurley P; Jiang J; Li Y
    Nanoscale; 2014 Jan; 6(2):882-8. PubMed ID: 24270510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution.
    Lee DJ; Agostini M; Park JW; Sun YK; Hassoun J; Scrosati B
    ChemSusChem; 2013 Dec; 6(12):2245-8. PubMed ID: 23943264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.
    Kim HM; Hwang JY; Manthiram A; Sun YK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):983-7. PubMed ID: 26686268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.
    Sun XG; Wang X; Mayes RT; Dai S
    ChemSusChem; 2012 Oct; 5(10):2079-85. PubMed ID: 22847977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance.
    Li Z; Yin L
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4029-38. PubMed ID: 25625174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomineralization-induced self-assembly of porous hollow carbon nanocapsule monoliths and their application in Li-S batteries.
    Hu W; Zhang H; Zhang Y; Wang M; Qu C; Yi J
    Chem Commun (Camb); 2015 Jan; 51(6):1085-8. PubMed ID: 25446908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.
    Zhou G; Yin LC; Wang DW; Li L; Pei S; Gentle IR; Li F; Cheng HM
    ACS Nano; 2013 Jun; 7(6):5367-75. PubMed ID: 23672616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries.
    Hou Y; Li J; Gao X; Wen Z; Yuan C; Chen J
    Nanoscale; 2016 Apr; 8(15):8228-35. PubMed ID: 27029963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomass-Derived Heteroatom-Doped Carbon Aerogels from a Salt Melt Sol-Gel Synthesis and their Performance in Li-S Batteries.
    Schipper F; Vizintin A; Ren J; Dominko R; Fellinger TP
    ChemSusChem; 2015 Sep; 8(18):3077-83. PubMed ID: 26373362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.