These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26736186)

  • 1. Force-feedback sensory substitution using supervised recurrent learning for robotic-assisted surgery.
    Aviles AI; Alsaleh SM; Sobrevilla P; Casals A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1-4. PubMed ID: 26736186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Retrieving Force Feedback in Robotic-Assisted Surgery: A Supervised Neuro-Recurrent-Vision Approach.
    Aviles AI; Alsaleh SM; Hahn JK; Casals A
    IEEE Trans Haptics; 2017; 10(3):431-443. PubMed ID: 28113330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vision-Based Suture Tensile Force Estimation in Robotic Surgery.
    Jung WJ; Kwak KS; Lim SC
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force estimation from OCT volumes using 3D CNNs.
    Gessert N; Beringhoff J; Otte C; Schlaefer A
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):1073-1082. PubMed ID: 29728900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced grip force estimation in robotic surgery: A sparrow search algorithm-optimized backpropagation neural network approach.
    Yan Y; Sun T; Ren T; Ding L
    Math Biosci Eng; 2024 Feb; 21(3):3519-3539. PubMed ID: 38549294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results.
    Su H; Hu Y; Karimi HR; Knoll A; Ferrigno G; De Momi E
    Neural Netw; 2020 Nov; 131():291-299. PubMed ID: 32841835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical force estimation for interactions between tool and soft tissues.
    Neidhardt M; Mieling R; Bengs M; Schlaefer A
    Sci Rep; 2023 Jan; 13(1):506. PubMed ID: 36627354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surgical-tools detection based on Convolutional Neural Network in laparoscopic robot-assisted surgery.
    Bareum Choi ; Kyungmin Jo ; Songe Choi ; Jaesoon Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1756-1759. PubMed ID: 29060227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-Machine Interaction Methods for Minimally Invasive Surgical Robotic Arms.
    Jiang F; Jia R; Jiang X; Cao F; Lei T; Luo L
    Comput Intell Neurosci; 2022; 2022():9434725. PubMed ID: 36124121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.
    Wottawa CR; Genovese B; Nowroozi BN; Hart SD; Bisley JW; Grundfest WS; Dutson EP
    Surg Endosc; 2016 Aug; 30(8):3198-209. PubMed ID: 26514132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic signal analysis of instrument-tissue interaction for minimally invasive interventions.
    Ostler D; Seibold M; Fuchtmann J; Samm N; Feussner H; Wilhelm D; Navab N
    Int J Comput Assist Radiol Surg; 2020 May; 15(5):771-779. PubMed ID: 32323212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simple Neural Network for Collision Detection of Collaborative Robots.
    Czubenko M; Kowalczuk Z
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot.
    Čížek P; Faigl J
    Bioinspir Biomim; 2019 May; 14(4):046002. PubMed ID: 30995613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CNN-based prototype method of unstructured surgical state perception and navigation for an endovascular surgery robot.
    Zhao Y; Guo S; Wang Y; Cui J; Ma Y; Zeng Y; Liu X; Jiang Y; Li Y; Shi L; Xiao N
    Med Biol Eng Comput; 2019 Sep; 57(9):1875-1887. PubMed ID: 31222531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.
    Kitagawa M; Dokko D; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2005 Jan; 129(1):151-8. PubMed ID: 15632837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. External force estimation and implementation in robotically assisted minimally invasive surgery.
    Sang H; Yun J; Monfaredi R; Wilson E; Fooladi H; Cleary K
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 28466997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Grasp Stability Estimation of Sensorized Soft Robotic Hand.
    Khin PM; Low JH; Ang MH; Yeow CH
    Front Robot AI; 2021; 8():619390. PubMed ID: 33869293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A force-sensing surgical tool with a proximally located force/torque sensor.
    Schwalb W; Shirinzadeh B; Smith J
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 26919028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Tool-Tissue Forces in Robot-Assisted Minimally Invasive Surgery Using Neural Networks.
    Abeywardena S; Yuan Q; Tzemanaki A; Psomopoulou E; Droukas L; Melhuish C; Dogramadzi S
    Front Robot AI; 2019; 6():56. PubMed ID: 33501071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.