These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26736186)

  • 41. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Estimating Tool-Tissue Forces Using a 3-Degree-of-Freedom Robotic Surgical Tool.
    Zhao B; Nelson CA
    J Mech Robot; 2016 Oct; 8(5):0510151-5101510. PubMed ID: 27303591
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Study on real-time force feedback for a master-slave interventional surgical robotic system.
    Guo S; Wang Y; Xiao N; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):37. PubMed ID: 29654553
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-Time Sclera Force Feedback for Enabling Safe Robot-Assisted Vitreoretinal Surgery.
    Ebrahimi A; He C; Roizenblatt M; Patel N; Sefati S; Gehlbach P; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3650-3655. PubMed ID: 30441165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Supervised autonomous robotic soft tissue surgery.
    Shademan A; Decker RS; Opfermann JD; Leonard S; Krieger A; Kim PC
    Sci Transl Med; 2016 May; 8(337):337ra64. PubMed ID: 27147588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. From deep learning to transfer learning for the prediction of skeletal muscle forces.
    Dao TT
    Med Biol Eng Comput; 2019 May; 57(5):1049-1058. PubMed ID: 30552553
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Long short-term memory recurrent neural network for pharmacokinetic-pharmacodynamic modeling.
    Liu X; Liu C; Huang R; Zhu H; Liu Q; Mitra S; Wang Y
    Int J Clin Pharmacol Ther; 2021 Feb; 59(2):138-146. PubMed ID: 33210994
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental analysis of robot-assisted needle insertion into porcine liver.
    Wang W; Shi Y; Goldenberg AA; Yuan X; Zhang P; He L; Zou Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S375-80. PubMed ID: 26406026
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robot-assisted Minimally-invasive Internal Fixation of Pelvic Ring Injuries: A Single-center Experience.
    Liu HS; Duan SJ; Xin FZ; Zhang Z; Wang XG; Liu SD
    Orthop Surg; 2019 Feb; 11(1):42-51. PubMed ID: 30714333
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robotic versus laparoscopic versus open colorectal surgery: towards defining criteria to the right choice.
    Zelhart M; Kaiser AM
    Surg Endosc; 2018 Jan; 32(1):24-38. PubMed ID: 28812154
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Segmenting and classifying activities in robot-assisted surgery with recurrent neural networks.
    DiPietro R; Ahmidi N; Malpani A; Waldram M; Lee GI; Lee MR; Vedula SS; Hager GD
    Int J Comput Assist Radiol Surg; 2019 Nov; 14(11):2005-2020. PubMed ID: 31037493
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.
    Pacchierotti C; Prattichizzo D; Kuchenbecker KJ
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):278-87. PubMed ID: 26186763
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The evolution of surgical approach for esophageal cancer.
    Gisbertz SS; Hagens ERC; Ruurda JP; Schneider PM; Tan LJ; Domrachev SA; Hoeppner J; van Berge Henegouwen MI
    Ann N Y Acad Sci; 2018 Dec; 1434(1):149-155. PubMed ID: 30191569
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A randomized trial comparing vaginal and laparoscopic hysterectomy vs robot-assisted hysterectomy.
    Lönnerfors C; Reynisson P; Persson J
    J Minim Invasive Gynecol; 2015 Jan; 22(1):78-86. PubMed ID: 25045857
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robotic Surgery of the Kidney, Bladder, and Prostate.
    Khosla A; Wagner AA
    Surg Clin North Am; 2016 Jun; 96(3):615-36. PubMed ID: 27261798
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robot-assisted minimally invasive esophagectomy for esophageal cancer: A systematic review.
    Ruurda JP; van der Sluis PC; van der Horst S; van Hilllegersberg R
    J Surg Oncol; 2015 Sep; 112(3):257-65. PubMed ID: 26390285
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An Intelligent Recurrent Neural Network with Long Short-Term Memory (LSTM) BASED Batch Normalization for Medical Image Denoising.
    Rajeev R; Samath JA; Karthikeyan NK
    J Med Syst; 2019 Jun; 43(8):234. PubMed ID: 31203556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gesture Classification Using LSTM Recurrent Neural Networks.
    Cifuentes J; Boulanger P; Pham MT; Prieto F; Moreau R
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6864-6867. PubMed ID: 31947417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.