These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 26736271)

  • 1. A Fluidic Culture Platform for Spatially Patterned Cell Growth, Differentiation, and Cocultures.
    Lembong J; Lerman MJ; Kingsbury TJ; Civin CI; Fisher JP
    Tissue Eng Part A; 2018 Dec; 24(23-24):1715-1732. PubMed ID: 29845891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered 3D vascular and neuronal networks in a microfluidic platform.
    Osaki T; Sivathanu V; Kamm RD
    Sci Rep; 2018 Mar; 8(1):5168. PubMed ID: 29581463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Cell Migration Chip (3DCM-Chip): A New Tool toward the Modeling of 3D Cellular Complex Systems.
    Buonvino S; Di Giuseppe D; Filippi J; Martinelli E; Seliktar D; Melino S
    Adv Healthc Mater; 2024 Aug; 13(20):e2400040. PubMed ID: 38739022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient-derived small intestinal myofibroblasts direct perfused, physiologically responsive capillary development in a microfluidic Gut-on-a-Chip Model.
    Seiler KM; Bajinting A; Alvarado DM; Traore MA; Binkley MM; Goo WH; Lanik WE; Ou J; Ismail U; Iticovici M; King CR; VanDussen KL; Swietlicki EA; Gazit V; Guo J; Luke CJ; Stappenbeck T; Ciorba MA; George SC; Meacham JM; Rubin DC; Good M; Warner BW
    Sci Rep; 2020 Mar; 10(1):3842. PubMed ID: 32123209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue Papers: Leveraging Paper-Based Microfluidics for the Next Generation of 3D Tissue Models.
    Cramer SM; Larson TS; Lockett MR
    Anal Chem; 2019 Sep; 91(17):10916-10926. PubMed ID: 31356054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering.
    Mobini S; Song YH; McCrary MW; Schmidt CE
    Biomaterials; 2019 Apr; 198():146-166. PubMed ID: 29880219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid co-culture stamping device for studying intercellular communication.
    Hassanzadeh-Barforoushi A; Shemesh J; Farbehi N; Asadnia M; Yeoh GH; Harvey RP; Nordon RE; Warkiani ME
    Sci Rep; 2016 Oct; 6():35618. PubMed ID: 27752145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plug-and-Play In Vitro Metastasis System toward Recapitulating the Metastatic Cascade.
    Ni BS; Tzao C; Huang JH
    Sci Rep; 2019 Dec; 9(1):18110. PubMed ID: 31792319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of in vitro cardiovascular tissue models within capillary circuit microfluidic devices fabricated with 3D Stereolithography printing.
    Esparza A; Jimenez N; Joddar B; Natividad-Diaz S
    Res Sq; 2023 Mar; ():. PubMed ID: 36993455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary-Scale Hydrogel Microchannel Networks by Wire Templating.
    Kawara S; Cunningham B; Bezer J; Kc N; Zhu J; Tang MX; Ishihara J; Choi JJ; Au SH
    Small; 2023 Oct; 19(42):e2301163. PubMed ID: 37267935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices.
    Wu Y; Okesola BO; Xu J; Korotkin I; Berardo A; Corridori I; di Brocchetti FLP; Kanczler J; Feng J; Li W; Shi Y; Farafonov V; Wang Y; Thompson RF; Titirici MM; Nerukh D; Karabasov S; Oreffo ROC; Carlos Rodriguez-Cabello J; Vozzi G; Azevedo HS; Pugno NM; Wang W; Mata A
    Nat Commun; 2020 Mar; 11(1):1182. PubMed ID: 32132534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for fabricating and characterizing microvessel-on-a-chip for human umbilical vein endothelial cells.
    Cacheux J; Nakajima T; Alcaide D; Sano T; Doi K; Bancaud A; Matsunaga YT
    STAR Protoc; 2024 Jun; 5(2):102950. PubMed ID: 38483899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of aconitine cardiotoxicity with a heart-on-a-particle prepared by a microfluidic device.
    Xu T; Wu Z; Yao H; Zhang Y; Chen S; Li Y; Meng XL; Zhang Y; Lin JM
    Chem Commun (Camb); 2024 May; 60(37):4898-4901. PubMed ID: 38629248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of Endothelial Cells, Pericytes, and Astrocytes into a 3D Microfluidic in Vitro Model of the Blood-Brain Barrier.
    Wang JD; Khafagy el-S; Khanafer K; Takayama S; ElSayed ME
    Mol Pharm; 2016 Mar; 13(3):895-906. PubMed ID: 26751280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of neurogenesis and angiogenesis models for constructing a neurovascular tissue.
    Uwamori H; Higuchi T; Arai K; Sudo R
    Sci Rep; 2017 Dec; 7(1):17349. PubMed ID: 29229920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of stable capillary networks using a microfluidic device.
    Sudo R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():350-3. PubMed ID: 26736271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Continuous Capillary Networks Stabilized by Pericyte-like Perivascular Cells.
    Yamamoto K; Tanimura K; Watanabe M; Sano H; Uwamori H; Mabuchi Y; Matsuzaki Y; Chung S; Kamm RD; Tanishita K; Sudo R
    Tissue Eng Part A; 2019 Mar; 25(5-6):499-510. PubMed ID: 30234439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Device Setting by Coculturing Endothelial Cells and Mesenchymal Stem Cells.
    Watanabe M; Sudo R
    Methods Mol Biol; 2021; 2206():57-66. PubMed ID: 32754811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic vascular-bed devices for vascularized 3D tissue engineering: tissue engineering on a chip.
    Takehara H; Sakaguchi K; Sekine H; Okano T; Shimizu T
    Biomed Microdevices; 2019 Dec; 22(1):9. PubMed ID: 31863202
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.